

The Cathedral and the Bazaar
Musings on Linux and Open Source by an

Accidental Revolutionary

,title.21657 Page i Friday, December 22, 2000 5:39 PM

,title.21657 Page ii Friday, December 22, 2000 5:39 PM

The Cathedral and the Bazaar
Musings on Linux and Open Source by an

Accidental Revolutionary

Eric S. Raymond
with a foreword by Bob Young

BEIJING • CAMBRIDGE • FARNHAM • KÖLN • PARIS • SEBASTOPOL • TAIPEI • TOKYO

,title.21657 Page iii Friday, December 22, 2000 5:39 PM

The Cathedral and the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary,
Revised Edition
by Eric S. Raymond

Copyright © 1999, 2001 by Eric S. Raymond.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc.,
101 Morris Street, Sebastopol, CA 95472.

Editor: Tim O’Reilly

Production Editor: Sarah Jane Shangraw

Cover Art Director/Designer: Edie Freedman

Interior Designers: Edie Freedman, David Futato, and Melanie Wang

Printing History:

October 1999: First Edition

January 2001: Revised Edition

This material may be distributed only subject to the terms and conditions
set forth in the Open Publication License, v1.0 or later. (The latest version
is presently available at http://www.opencontent.org/openpub/.)
Distribution of substantively modified versions of this document is
prohibited without the explicit permission of the copyright holder.
Distribution of the work or derivatives of the work in any standard (paper)
book form is prohibited unless prior permission is obtained from the
copyright holder.

The O’Reilly logo is a registered trademark of O’Reilly & Associates, Inc.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

Library of Congress Cataloging-in-Publication data is available at:
http://www.oreilly.com/catalog/cathbazpaper/.

0-596-00108-8 (paperback)
0-596-00131-2 (hardcover)
[C]

,copyright.21302 Page iv Friday, December 22, 2000 5:38 PM

To the Memory of Robert Anson Heinlein

For the many lessons he taught me:
to respect competence, to value and defend freedom,

and especially, that specialization is for insects.

✦ ✦ ✦

,dedication.21536 Page v Friday, December 22, 2000 5:39 PM

,dedication.21536 Page vi Friday, December 22, 2000 5:39 PM

Table of Contents

Foreword ix

Preface: Why You Should Care xi

A Brief History of Hackerdom 1

The Cathedral and the Bazaar 19

Homesteading the Noosphere 65

The Magic Cauldron 113

Revenge of the Hackers 167

Afterword: Beyond Software? 193

Appendix A: How to Become a Hacker 195

Appendix B: Statistical Trends in the 215
Fetchmail Project’s Growth

Notes, Bibliography, 219
and Acknowledgments

vii

22 December 2000 17:45

Foreword

✦ ✦ ✦

Freedom is not an abstract concept in business.

The success of any industry is almost directly related to the degree
of freedom the suppliers and the customers of that industry enjoy.
Just compare the innovation in the U.S. telephone business since
AT&T lost its monopoly control over American consumers with
the previously slow pace of innovation when those customers had
no freedom to choose.

The world’s best example of the benefits of freedom in business is
a comparison of the computer hardware business and the com-
puter software business. In computer hardware, where freedom
reigns for both suppliers and consumers alike on a global scale,
the industry generates the fastest innovation in product and cus-
tomer value the world has ever seen. In the computer software
industry, on the other hand, change is measured in decades. The
office suite, the 1980s killer application, wasn’t challenged until
the 1990s with the introduction of the web browser and server.

Open-source software brings to the computer software industry
even greater freedom than the hardware manufacturers and con-
sumers have enjoyed.

Computer languages are called languages because they are just
that. They enable the educated members of our society (in this

ix

21 December 2000 17:17

The Cathedral and the Bazaar

case, programmers) to build and communicate ideas that benefit
the other members of our society, including other programmers.
Legally restricting access to knowledge of the infrastructure that
our society increasingly relies on (via the proprietary binary-only
software licenses our industry historically has used) results in less
freedom and slower innovation.

Open source represents some revolutionary concepts being thrown
at an industry that thought it had all of its fundamental structures
worked out. It gives customers control over the technologies they
use, instead of enabling the vendors to control their customers
through restricting access to the code behind the technologies.
Supplying open-source tools to the market will require new busi-
ness models. But by delivering unique benefits to the market, those
companies that develop the business models will be very successful
competing with companies that attempt to retain control over
their customers.

There have always been two things that would be required if
open-source software was to materially change the world: one was
for open-source software to become widely used and the other
was that the benefits this software development model supplied to
its users had to be communicated and understood.

This is Eric Raymond’s great contribution to the success of the
open-source software revolution, to the adoption of Linux-based
operating systems, and to the success of open-source users and the
companies that supply them. Eric’s ability to explain clearly, effec-
tively, and accurately the benefits of this revolutionary software
development model has been central to the success of this revolu-
tion.

—Bob Young, Chairman and CEO, Red Hat, Inc.

x

21 December 2000 17:17

Preface: Why You Should Care

✦ ✦ ✦

The book in your hands is about the behavior and culture of com-
puter hackers. It collects a series of essays originally meant for
programmers and technical managers. The obvious (and entirely
fair) question for you, the potential reader, to ask is: ‘‘Why should
I care?’’

The most obvious answer to this question is that computer soft-
ware is an increasingly critical factor in the world economy and in
the strategic calculations of businesses. That you have opened this
book at all means you are almost certainly familiar with many of
today’s truisms about the information economy, the digital age,
and the wired world; I will not rehearse them here. I will simply
point out that any significant advance in our understanding of
how to build better-quality, more reliable software has tremen-
dous implications that are growing more tremendous by the day.

The essays in this book did not invent such a fundamental
advance, but they do describe one: open-source software, the pro-
cess of systematically harnessing open development and decentral-
ized peer review to lower costs and improve software quality.
Open-source software is not a new idea (its traditions go back to
the beginnings of the Internet thirty years ago), but only recently
have technical and market forces converged to draw it out of a
niche role. Today the open-source movement is bidding strongly to

xi

22 December 2000 17:45

The Cathedral and the Bazaar

define the computing infrastructure of the next century. For any-
one who relies on computers, that makes it an important thing to
understand.

I just referred to the ‘‘open-source movement’’. That hints at other
and perhaps more ultimately interesting reasons for the reader to
care. The idea of open source has been pursued, realized, and
cherished over those thirty years by a vigorous tribe of partisans
native to the Internet. These are the people who proudly call
themselves ‘‘hackers’’—not as the term is now abused by journal-
ists to mean a computer criminal, but in its true and original sense
of an enthusiast, an artist, a tinkerer, a problem solver, an expert.

The tribe of hackers, after decades spent in obscurity struggling
against hard technical problems and the far greater weight of
mainstream indifference and dismissal, has recently begun to come
into its own. They built the Internet; they built Unix; they built the
World Wide Web; they’re building Linux and open-source soft-
ware today; and, following the great Internet explosion of the
mid-1990s, the rest of the world is finally figuring out that it
should have been paying more attention to them all along.

The hacker culture and its successes pose by example some funda-
mental questions about human motivation, the organization of
work, the future of professionalism, and the shape of the firm—
and about how all of these things will change and evolve in the
information-rich post-scarcity economies of the 21st century and
beyond. The hacker culture also, arguably, prefigures some pro-
found changes in the way humans will relate to and reshape their
economic surroundings. This should make what we know about
the hacker culture of interest to anyone else who will have to live
and work in the future.

This book is a collection of essays that were originally published
on the Internet; A Brief History of Hackerdom is originally from
1992, but has since been regularly updated and revised, and the
others were written between February 1997 and May 1999. They
were somewhat revised and expanded for the first edition in

xii

22 December 2000 17:45

October 1999, and updated again for this second edition of Jan-
uary 2001, but no really concerted attempt has been made to
remove technicalia or make them more accessible (e.g., dumb
them down) for a general audience. I think it more respectful to
puzzle and challenge an audience than to bore and insult it. If you
have difficulty with particular technical or historical points or the
odd computer acronym, feel free to skip ahead; the whole does tell
a story, and you may find that what you learn later makes sense of
what puzzled you earlier.

The reader should also understand that these essays are evolving
documents, into which I periodically merge the distilled results of
feedback from people who write to comment on or correct them.
While I alone remain responsible for any errors in this book, it has
benefitted from a peer-review process very like that which it
describes for software, and incorporates contributions from peo-
ple too numerous to list here. The versions printed here are not
fixed or final forms; rather, they should be considered reports from
a continuing inquiry in which many members of the culture they
describe are active participants.

Finally, I must at least try to express my delight and amazement
and gratitude for the many people and the long chain of appar-
ently fortuitous circumstances that have led up to this book

Some particular thanks are due for long-term friendship and sup-
port for the work captured between these covers. Thank you,
Linus Torvalds. Thank you, Larry Augustin. Thank you, Doc
Searls. Thank you, Tim O’Reilly. You are all people I am proud to
call friends as well as colleagues. Most especially: thank you,
Catherine Raymond — my love, my wife, and my longest-time
supporter.

I am a hacker. I have been part of the culture described in this
book for more than 20 years. In that time I have been privileged
to work and play with some of the most interesting and excep-
tional people on Earth, solving fascinating problems and (on a
precious few occasions) creating something both genuinely new

Preface

xiii

22 December 2000 17:45

The Cathedral and the Bazaar

and useful. Too many of those people to name here have taught
me valuable lessons, about our shared craft and many other
things. The essays in this book are my return gift to them.

These essays were stages of discovery for me as well, reports from
a fascinating journey in which I learned to see the long-familiar in
a new and deeper way. To my then and continuing astonishment,
the mere act of reporting this journey turned out to have a catalyz-
ing effect on the emergence of open source into the mainstream. I
hope the reader of my travel papers will catch some of the excite-
ment of that journey and of the amazing prospects that are
unfolding before us today as mainstream business and consumers
take their first steps on the same road.

Revision Notes for
the Second Edition

For the benefit of readers of the first edition, here follows a sum-
mary of topics on which there have been substantive additions or
revisions in the second edition:

How many eyeballs tames complexity. The deadliness of dead-
lines. A more precise definition of forking and pseudoforking. The
relevance of evolutionary handicap theory, peacocks, and stags to
open-source developer motivation. Economically, why isn’t open
source underprovided? Effects of asymmetric information. Open-
sourcing as a competitive weapon. The predictions in Revenge of
the Hackers have been examined from the perspective of one year
later, and new ones added. An appendix on the growth of the
fetchmail project has been added.

xi v

22 December 2000 17:45

A Brief History of Hackerdom

✦ ✦ ✦

I explore the origins of the hacker culture, including pre-

history among the Real Programmers, the glory days of

the MIT hackers, and how the early ARPAnet nurtured

the first network nation. I describe the early rise and even-

tual stagnation of Unix, the new hope from Finland, and

how ‘‘the last true hacker’’ became the next generation’s

patriarch. I sketch the way Linux and the mainstreaming

of the Internet brought the hacker culture from the fringes

of public consciousness to its current prominence.

1

22 December 2000 17:45

22 December 2000 17:45

Prologue: The Real Programmers

In the beginning, there were Real Programmers.

That’s not what they called themselves. They didn’t call themselves
hackers, either, or anything in particular; the sobriquet ‘Real Pro-
grammer’ wasn’t coined until after 1980, retrospectively by one of
their own. But from 1945 onward, the technology of computing
attracted many of the world’s brightest and most creative minds.
From Eckert and Mauchly’s first ENIAC computer onward there
was a more or less continuous and self-conscious technical culture
of enthusiast programmers, people who built and played with
software for fun.

The Real Programmers typically came out of engineering or
physics backgrounds. They were often amateur-radio hobbyists.
They wore white socks and polyester shirts and ties and thick
glasses and coded in machine language and assembler and FOR-
TRAN and half a dozen ancient languages now forgotten.

From the end of World War II to the early 1970s, in the great days
of batch processing and the ‘‘big iron’’ mainframes, the Real Pro-
grammers were the dominant technical culture in computing. A
few pieces of revered hacker folklore date from this era, including
various lists of Murphy’s Laws and the mock-German ‘‘Blinken-
lights’’ poster that still graces many computer rooms.

Some people who grew up in the Real Programmer culture
remained active into the 1990s. Seymour Cray, designer of the
Cray line of supercomputers, was among the greatest. He is said
to have once toggled an entire operating system of his own design
into a computer of his own design through its front-panel

A Brief History of Hackerdom

3

22 December 2000 17:45

The Cathedral and the Bazaar

switches. In octal. Without an error. And it worked. Real Pro-
grammer macho supremo.

The ‘Real Programmer’ culture, though, was heavily associated
with batch (and especially batch scientific) computing. It was
eventually eclipsed by the rise of interactive computing, the univer-
sities, and the networks. These gave birth to another engineering
tradition that, eventually, would evolve into today’s open-source
hacker culture.

The Early Hackers

The beginnings of the hacker culture as we know it today can be
conveniently dated to 1961, the year MIT acquired the first
PDP-1. The Signals and Power Committee of MIT’s Tech Model
Railroad Club adopted the machine as their favorite tech-toy and
invented programming tools, slang, and an entire surrounding cul-
ture that is still recognizably with us today. These early years have
been examined in the first part of Steven Levy’s book Hackers,
Anchor/Doubleday 1984, ISBN 0-385-19195-2.

MIT’s computer culture seems to have been the first to adopt the
term ‘hacker’. The Tech Model Railroad Club’s hackers became
the nucleus of MIT’s Artificial Intelligence Laboratory, the world’s
leading center of AI research into the early 1980s. Their influence
was spread far wider after 1969, the first year of the ARPAnet.

The ARPAnet was the first transcontinental, high-speed computer
network. It was built by the Defense Department as an experiment
in digital communications, but grew to link together hundreds of
universities and defense contractors and research laboratories. It
enabled researchers everywhere to exchange information with
unprecedented speed and flexibility, giving a huge boost to collab-
orative work and tremendously increasing both the pace and
intensity of technological advance.

But the ARPAnet did something else as well. Its electronic high-
ways brought together hackers all over the U.S. in a critical mass;

4

22 December 2000 17:45

instead of remaining in isolated small groups each developing their
own ephemeral local cultures, they discovered (or re-invented)
themselves as a networked tribe.

The first intentional artifacts of the hacker culture—the first slang
lists, the first satires, the first self-conscious discussions of the
hacker ethic—all propagated on the ARPAnet in its early years. In
particular, the first version of the Jargon File
(http://www.tuxedo.org/jargon) developed as a cross-net collabo-
ration during 1973–1975. This slang dictionary became one of the
culture’s defining documents. It was eventually published as The
Hacker’s Dictionary in 1983; that first version is out of print, but
a revised and expanded version is The New Hacker’s Dictionary,
MIT Press, 3rd edition 1996, ISBN 0-262-68092-0 .

Hackerdom flowered at the universities connected to the net, espe-
cially (though not exclusively) in their computer science depart-
ments. MIT’s AI and LCS labs made it first among equals from the
late 1960s. But Stanford University’s Artificial Intelligence Labora-
tory (SAIL) and Carnegie-Mellon University (CMU) became
nearly yas important. All were thriving centers of computer sci-
ence and AI research. All attracted bright people who contributed
great things to the hacker culture, on both the technical and folk-
loric levels.

To understand what came later, though, we need to take another
look at the computers themselves, because the AI Lab’s rise and its
eventual fall were both driven by waves of change in computing
technology.

Since the days of the PDP-1, hackerdom’s fortunes had been
woven together with Digital Equipment Corporation’s PDP series
of minicomputers. DEC pioneered commercial interactive comput-
ing and time-sharing operating systems. Because their machines
were flexible, powerful, and relatively cheap for the era, lots of
universities bought them.

A Brief History of Hackerdom

5

22 December 2000 17:45

The Cathedral and the Bazaar

Cheap time-sharing was the medium the hacker culture grew in,
and for most of its lifespan the ARPAnet was primarily a network
of DEC machines. The most important of these was the PDP-10,
first released in 1967. The 10 remained hackerdom’s favorite
machine for almost fifteen years; TOPS-10 (DEC’s operating sys-
tem for the machine) and MACRO-10 (its assembler) are still
remembered with nostalgic fondness in a great deal of slang and
folklore.

MIT, though it used the same PDP-10s as everyone else, took a
slightly different path; it rejected DEC’s software for the PDP-10
entirely and built its own operating system, the fabled ITS.

ITS stood for ‘‘Incompatible Time-sharing System’’ which gives
one a pretty good fix on the MIT hackers’ attitude. They wanted it
their way. Fortunately for all, MIT’s people had the intelligence to
match their arrogance. ITS, quirky and eccentric and occasionally
buggy though it always was, hosted a brilliant series of technical
innovations and still arguably holds the record as the single time-
sharing system in longest continuous use.

ITS itself was written in assembler, but many ITS projects were
written in the AI language LISP. LISP was far more powerful and
flexible than any other language of its day; in fact, it is still a bet-
ter design than most languages of today, 25 years later. LISP freed
ITS’s hackers to think in unusual and creative ways. It was a
major factor in their successes, and remains one of hackerdom’s
favorite languages.

Many of the ITS culture’s technical creations are still alive today;
the EMACS program editor is perhaps the best-known. And much
of ITS’s folklore is still ‘live’ to hackers, as one can see in the
Jargon File (http://www.tuxedo.org/jargon).

SAIL and CMU weren’t asleep, either. Many of the cadre of hack-
ers that grew up around SAIL’s PDP-10 later became key figures in
the development of the personal computer and today’s window/
icon/mouse software interfaces. Meanwhile hackers at CMU were

6

22 December 2000 17:45

doing the work that would lead to the first practical large-scale
applications of expert systems and industrial robotics.

Another important node of the culture was XEROX PARC, the
famed Palo Alto Research Center. For more than a decade, from
the early 1970s into the mid-1980s, PARC yielded an astonishing
volume of groundbreaking hardware and software innovations.
The modern mice, windows, and icons style of software interface
was invented there. So were the laser printer and the local-area
network; and PARC’s series of D machines anticipated the power-
ful personal computers of the 1980s by a decade. Sadly, these
prophets were without honor in their own company; so much so
that it became a standard joke to describe PARC as a place char-
acterized by developing brilliant ideas for everyone else. Their
influence on hackerdom was pervasive.

The ARPAnet and the PDP-10 cultures grew in strength and vari-
ety throughout the 1970s. The facilities for electronic mailing lists
that had been used to foster cooperation among continent-wide
special-interest groups were increasingly also used for more social
and recreational purposes. DARPA deliberately turned a blind eye
to all the technically ‘unauthorized’ activity; it understood that the
extra overhead was a small price to pay for attracting an entire
generation of bright young people into the computing field.

Perhaps the best-known of the ‘social’ ARPAnet mailing lists was
the SF-LOVERS list for science-fiction fans; it is still very much
alive today, in fact, on the larger ‘Internet’ that ARPAnet evolved
into. But there were many others, pioneering a style of communi-
cation that would later be commercialized by for-profit time-shar-
ing services like CompuServe, GEnie, and Prodigy (and later still
dominated by AOL).

Your historian first became involved with the hacker culture in
1977 through the early ARPAnet and science-fiction fandom.
From then onward, I personally witnessed and participated in
many of the changes described here.

A Brief History of Hackerdom

7

22 December 2000 17:45

The Cathedral and the Bazaar

The Rise of Unix

Far from the bright lights of the ARPAnet, off in the wilds of New
Jersey, something else had been going on since 1969 that would
eventually overshadow the PDP-10 tradition. The year of
ARPAnet’s birth was also the year that a Bell Labs hacker named
Ken Thompson invented Unix.

Thompson had been involved with the development work on a
time-sharing OS called Multics, which shared common ancestry
with ITS. Multics was a test-bed for some important ideas about
how the complexity of an operating system could be hidden inside
it, invisible to the user, and even to most programmers. The idea
was to make using Multics from the outside (and programming
for it!) much simpler, so that more real work could get done.

Bell Labs pulled out of the project when Multics displayed signs of
bloating into an unusable white elephant (the system was later
marketed commercially by Honeywell but never became a suc-
cess). Ken Thompson missed the Multics environment, and began
to play at implementing a mixture of its ideas and some of his
own on a scavenged DEC PDP-7.

Another hacker named Dennis Ritchie invented a new language
called C for use under Thompson’s embryonic Unix. Like Unix, C
was designed to be pleasant, unconstraining, and flexible. Interest
in these tools spread at Bell Labs, and they got a boost in 1971
when Thompson and Ritchie won a bid to produce what we’d
now call an office automation system for internal use there. But
Thompson & Ritchie had their eye on a bigger prize.

Traditionally, operating systems had been written in tight assem-
bler to extract the absolute highest efficiency possible out of their
host machines. Thompson and Ritchie were among the first to
realize that hardware and compiler technology had become good
enough that an entire operating system could be written in C, and
by 1978 the whole environment had been successfully ported to
several machines of different types.

8

22 December 2000 17:45

This had never been done before, and the implications were enor-
mous. If Unix could present the same face, the same capabilities,
on machines of many different types, it could serve as a common
software environment for all of them. No longer would users have
to pay for complete new designs of software every time a machine
went obsolete. Hackers could carry around software toolkits
between different machines, rather than having to re-invent the
equivalents of fire and the wheel every time.

Besides portability, Unix and C had some other important
strengths. Both were constructed from a ‘‘Keep It Simple, Stupid’’
philosophy. A programmer could easily hold the entire logical
structure of C in his head (unlike most other languages before or
since) rather than needing to refer constantly to manuals; and
Unix was structured as a flexible toolkit of simple programs
designed to combine with each other in useful ways.

The combination proved to be adaptable to a very wide range of
computing tasks, including many completely unanticipated by the
designers. It spread very rapidly within AT&T, in spite of the lack
of any formal support program for it. By 1980 it had spread to a
large number of university and research computing sites, and
thousands of hackers considered it home.

The workhorse machines of the early Unix culture were the
PDP-11 and its descendant, the VAX. But because of Unix’s porta-
bility, it ran essentially unaltered on a wider range of machines
than one could find on the entire ARPAnet. And nobody used
assembler; C programs were readily portable among all these
machines.

Unix even had its own networking, of sorts—UUCP: low-speed
and unreliable, but cheap. Any two Unix machines could
exchange point-to-point electronic mail over ordinary phone lines;
this capability was built into the system, not an optional extra. In
1980 the first Usenet sites began exchanging broadcast news,
forming a gigantic distributed bulletin board that would quickly

A Brief History of Hackerdom

9

22 December 2000 17:45

The Cathedral and the Bazaar

grow bigger than ARPAnet. Unix sites began to form a network
nation of their own around Usenet.

A few Unix sites were on the ARPAnet themselves. The PDP-10
and Unix/Usenet cultures began to meet and mingle at the edges,
but they didn’t mix very well at first. The PDP-10 hackers tended
to consider the Unix crowd a bunch of upstarts, using tools that
looked ridiculously primitive when set against the baroque, lovely
complexities of LISP and ITS. ‘‘Stone knives and bearskins!’’ they
muttered.

And there was yet a third current flowing. The first personal com-
puter had been marketed in 1975; Apple was founded in 1977,
and advances came with almost unbelievable rapidity in the years
that followed. The potential of microcomputers was clear, and
attracted yet another generation of bright young hackers. Their
language was BASIC, so primitive that PDP-10 partisans and Unix
aficionados both considered it beneath contempt.

The End of Elder Day s

So matters stood in 1980: three cultures, overlapping at the edges
but clustered around very different technologies. The ARPAnet/
PDP-10 culture, wedded to LISP and MACRO and TOPS-10 and
ITS and SAIL. The Unix and C crowd with their PDP-11s and
VAXen and pokey telephone connections. And an anarchic horde
of early microcomputer enthusiasts bent on taking computer
power to the people.

Among these, the ITS culture could still claim pride of place. But
stormclouds were gathering over the Lab. The PDP-10 technology
ITS depended on was aging, and the Lab itself was split into fac-
tions by the first attempts to commercialize artificial intelligence.
Some of the Lab’s (and SAIL’s and CMU’s) best were lured away
to high-paying jobs at startup companies.

The death blow came in 1983, when DEC cancelled its Jupiter fol-
low-on to the PDP-10 in order to concentrate on the PDP-11 and

10

22 December 2000 17:45

VAX lines. ITS no longer had a future. Because it wasn’t portable,
it was more effort than anyone could afford to move ITS to new
hardware. The Berkeley variant of Unix running on a VAX
became the hacking system par excellence, and anyone with an eye
on the future could see that microcomputers were growing in
power so rapidly that they were likely to sweep all before them.

It’s around this time that Levy wrote Hackers. One of his prime
informants was Richard M. Stallman (inventor of Emacs), a lead-
ing figure at the Lab and its most fanatical holdout against the
commercialization of Lab technology.

Stallman (who is usually known by his initials and login name,
RMS) went on to form the Free Software Foundation and dedicate
himself to producing high-quality free software. Levy eulogized
him as ‘‘the last true hacker’’, a description which happily proved
incorrect.

Stallman’s grandest scheme neatly epitomized the transition hack-
erdom underwent in the early eighties—in 1982 he began the con-
struction of an entire clone of Unix, written in C and available for
free. His project was known as the GNU (Gnu’s Not Unix) operat-
ing system, in a kind of recursive acronym. GNU quickly became
a major focus for hacker activity. Thus, the spirit and tradition of
ITS was preserved as an important part of the newer, Unix and
VAX-centered hacker culture.

Indeed, for more than a decade after its founding RMS’s Free Soft-
ware Foundation would largely define the public ideology of the
hacker culture, and Stallman himself would be the only credible
claimant to leadership of the tribe.

It was also around 1982–83 that microchip and local-area net-
work technology began to have a serious impact on hackerdom.
Ethernet and the Motorola 68000 microchip made a potentially
potent combination, and several different startups had been
formed to build the first generation of what we now call work-
stations.

A Brief History of Hackerdom

11

22 December 2000 17:45

The Cathedral and the Bazaar

In 1982, a group of Unix hackers from Stanford and Berkeley
founded Sun Microsystems on the belief that Unix running on rel-
atively inexpensive 68000-based hardware would prove a winning
combination for a wide variety of applications. They were right,
and their vision set the pattern for an entire industry. While still
priced out of reach of most individuals, workstations were cheap
for corporations and universities; networks of them (one to a user)
rapidly replaced the older VAXes and other time-sharing systems.

The Proprietary-Unix Era

By 1984, when Ma Bell divested and Unix became a supported
AT&T product for the first time, the most important fault line in
hackerdom was between a relatively cohesive ‘network nation’
centered around the Internet and Usenet (and mostly using mini-
computer- or workstation-class machines running Unix), and a
vast disconnected hinterland of microcomputer enthusiasts.

It was also around this time that serious cracking episodes were
first covered in the mainstream press—and journalists began to
misapply the term ‘‘hacker’’ to refer to computer vandals, an abuse
which sadly continues to this day.

The workstation-class machines built by Sun and others opened
up new worlds for hackers. They were built to do high-perfor-
mance graphics and pass around shared data over a network. Dur-
ing the 1980s hackerdom was preoccupied by the software and
tool-building challenges of getting the most use out of these fea-
tures. Berkeley Unix developed built-in support for the ARPAnet
protocols, which offered a solution to the networking problems
associated with UUCP’s slow point-to-point links and encouraged
further growth of the Internet.

There were several attempts to tame workstation graphics. The
one that prevailed was the X Window System, developed at MIT
with contributions from hundreds of individuals at dozens of com-
panies. A critical factor in its success was that the X developers
were willing to give the sources away for free in accordance with

12

22 December 2000 17:45

the hacker ethic, and able to distribute them over the Internet. X’s
victory over proprietary graphics systems (including one offered
by Sun itself) was an important harbinger of changes that, a few
years later, would profoundly affect Unix as a whole.

There was a bit of factional spleen still vented occasionally in the
ITS/Unix rivalry (mostly from the ex-ITSers’ side). But the last ITS
machine shut down for good in 1990; the zealots no longer had a
place to stand and mostly assimilated to the Unix culture with var-
ious degrees of grumbling.

Within networked hackerdom itself, the big rivalry of the 1980s
was between fans of Berkeley Unix and the AT&T versions. Occa-
sionally you can still find copies of a poster from that period,
showing a cartoony X-wing fighter out of the ‘‘Star Wars’’ movies
streaking away from an exploding Death Star patterned on the
AT&T logo. Berkeley hackers liked to see themselves as rebels
against soulless corporate empires. AT&T Unix never caught up
with BSD/Sun in the marketplace, but it won the standards wars.
By 1990, AT&T and BSD versions were becoming harder to tell
apart, having adopted many of each other’s innovations.

As the 1990s opened, the workstation technology of the previous
decade was beginning to look distinctly threatened by newer, low-
cost and high-performance personal computers based on the Intel
386 chip and its descendants. For the first time, individual hackers
could afford to have home machines comparable in power and
storage capacity to the minicomputers of ten years earlier—Unix
engines capable of supporting a full development environment and
talking to the Internet.

The MS-DOS world remained blissfully ignorant of all this.
Though those early microcomputer enthusiasts quickly expanded
to constitute a population of DOS and Mac hackers orders of
magnitude larger than that of the network nation culture, they
never became a self-aware of their culture. The pace of change
was so fast that fifty different technical cultures grew and died as
rapidly as mayflies, never achieving quite the stability necessary to

A Brief History of Hackerdom

13

22 December 2000 17:45

The Cathedral and the Bazaar

develop a common tradition of jargon, folklore, and mythic his-
tory. The absence of a really pervasive network comparable to
UUCP or Internet prevented them from becoming a network
nation themselves.

Widespread access to commercial online services like CompuServe
and GEnie was beginning to take hold, but the fact that non-Unix
operating systems don’t come bundled with development tools
meant that very little source was passed over them. Thus, no tradi-
tion of collaborative hacking developed.

The mainstream of hackerdom, (dis)organized around the Internet
and by now largely identified with the Unix technical culture,
didn’t care about the commercial services. These hackers wanted
better tools and more Internet, and cheap 32-bit PCs promised to
put both in everyone’s reach.

But where was the software? Commercial Unixes remained expen-
sive, in the multiple-kilobuck range. In the early 1990s several
companies made a go at selling AT&T or BSD Unix ports for PC-
class machines. Success was elusive, prices didn’t come down
much, and (worst of all) you didn’t get modifiable and redis-
tributable sources with your operating system. The traditional
software-business model wasn’t giving hackers what they wanted.

Neither was the Free Software Foundation. The development of
HURD, RMS’s long-promised free Unix kernel for hackers, got
stalled for years and failed to produce anything like a usable ker-
nel until 1996 (though by 1990 FSF supplied almost all the other
difficult parts of a Unix-like operating system).

Worse, by the early 1990s it was becoming clear that ten years of
effort to commercialize proprietary Unix was ending in failure.
Unix’s promise of cross-platform portability got lost in bickering
among half a dozen proprietary Unix versions. The proprietary-
Unix players proved so ponderous, so blind, and so inept at mar-
keting that Microsoft was able to grab away a large part of their

14

22 December 2000 17:45

market with the shockingly inferior technology of its Windows
operating system.

In early 1993, a hostile observer might have had grounds for
thinking that the Unix story was almost played out, and with it
the fortunes of the hacker tribe. And there was no shortage of hos-
tile observers in the computer trade press, many of whom had
been ritually predicting the imminent death of Unix at six-month
intervals ever since the late 1970s.

In those days it was conventional wisdom that the era of individ-
ual techno-heroism was over, that the software industry and the
nascent Internet would increasingly be dominated by colossi like
Microsoft. The first generation of Unix hackers seemed to be get-
ting old and tired (Berkeley’s Computer Science Research Group
ran out of steam and would lose its funding in 1994). It was a
depressing time.

Fortunately, there had been things going on out of sight of the
trade press, and out of sight even of most hackers, that would pro-
duce startlingly positive developments in later 1993 and 1994.
Eventually, these would take the culture in a whole new direction
and to undreamed-of successes.

The Early Free Unixes

Into the gap left by the Free Software Foundation’s uncompleted
HURD had stepped a Helsinki University student named Linus
Torvalds. In 1991 he began developing a free Unix kernel for 386
machines using the Free Software Foundation’s toolkit. His initial,
rapid success attracted many Internet hackers to help him develop
Linux, a full-featured Unix with entirely free and redistributable
sources.

Linux was not without competitors. In 1991, contemporaneously
with Linus Torvalds’s early experiments, William and Lynne Jolitz
were experimentally porting the BSD Unix sources to the 386.
Most observers comparing BSD technology with Linus’s crude

A Brief History of Hackerdom

15

22 December 2000 17:45

The Cathedral and the Bazaar

early efforts expected that BSD ports would become the most
important free Unixes on the PC.

The most important feature of Linux, however, was not technical
but sociological. Until the Linux development, everyone believed
that any software as complex as an operating system had to be
developed in a carefully coordinated way by a relatively small,
tightly-knit group of people. This model was and still is typical of
both commercial software and the great freeware cathedrals built
by the Free Software Foundation in the 1980s; also of the
freeBSD/netBSD/OpenBSD projects that spun off from the Jolitzes’
original 386BSD port.

Linux evolved in a completely different way. From nearly the
beginning, it was rather casually hacked on by huge numbers of
volunteers coordinating only through the Internet. Quality was
maintained not by rigid standards or autocracy but by the naively
simple strategy of releasing every week and getting feedback from
hundreds of users within days, creating a sort of rapid Darwinian
selection on the mutations introduced by developers. To the
amazement of almost everyone, this worked quite well.

By late 1993 Linux could compete on stability and reliability with
many commercial Unixes, and hosted vastly more software. It was
even beginning to attract ports of commercial applications soft-
ware. One indirect effect of this development was to kill off most
of the smaller proprietary Unix vendors—without developers and
hackers to sell to, they folded. One of the few survivors, BSDI
(Berkeley Systems Design, Incorporated), flourished by offering
full sources with its BSD-based Unix and cultivating close ties with
the hacker community.

These developments were not much remarked on at the time
within the hacker culture, and not at all outside it. The hacker cul-
ture, defying repeated predictions of its demise, was just beginning
to remake the commercial-software world in its own image. It
would be five more years, however, before this trend became
obvious.

16

22 December 2000 17:45

The Great Web Explosion

The early growth of Linux synergized with another phenomenon:
the public discovery of the Internet. The early 1990s also saw the
beginnings of a flourishing Internet-provider industry, selling con-
nectivity to the public for a few dollars a month. Following the
invention of the World Wide Web, the Internet’s already rapid
growth accelerated to a breakneck pace.

By 1994, the year Berkeley’s Unix development group formally
shut down, several different free Unix versions (Linux and the
descendants of 386BSD) served as the major focal points of hack-
ing activity. Linux was being distributed commercially on CD-
ROM and selling like hotcakes. By the end of 1995, major com-
puter companies were beginning to take out glossy advertisements
celebrating the Internet-friendliness of their software and hard-
ware!

In the late 1990s the central activities of hackerdom became Linux
development and the mainstreaming of the Internet. The World
Wide Web has at last made the Internet into a mass medium, and
many of the hackers of the 1980s and early 1990s launched Inter-
net Service Providers selling or giving access to the masses.

The mainstreaming of the Internet even brought the hacker culture
the beginnings of respectability and political clout. In 1994 and
1995 hacker activism scuppered the Clipper proposal which
would have put strong encryption under government control. In
1996 hackers mobilized a broad coalition to defeat the misnamed
‘‘Communications Decency Act’’ (CDA) and prevent censorship of
the Internet.

With the CDA victory, we pass out of history into current events.
We also pass into a period in which your historian (rather to his
own surprise) became an actor rather than just an observer. This
narrative will continue in Revenge of the Hackers.

A Brief History of Hackerdom

17

22 December 2000 17:45

The Cathedral and the Bazaar

✦ ✦ ✦

I anatomize a successful open-source project, fetchmail,

that was run as a deliberate test of the surprising theories

about software engineering suggested by the history of

Linux. I discuss these theories in terms of two fundamen-

tally different development styles, the ‘cathedral’ model of

most of the commercial world versus the ‘bazaar’ model

of the Linux world. I show that these models derive from

opposing assumptions about the nature of the software-

debugging task. I then make a sustained argument from

the Linux experience for the proposition that ‘‘Gi ven

enough eyeballs, all bugs are shallow’’, suggest productive

analogies with other self-correcting systems of selfish

agents, and conclude with some exploration of the impli-

cations of this insight for the future of software.

19

22 December 2000 18:18

22 December 2000 18:18

The Cathedral and the Bazaar

Linux is subversive. Who would have thought even five years ago
(1991) that a world-class operating system could coalesce as if by
magic out of part-time hacking by several thousand developers
scattered all over the planet, connected only by the tenuous
strands of the Internet?

Certainly not I. By the time Linux swam onto my radar screen in
early 1993, I had already been involved in Unix and open-source
development for 10 years. I was one of the first GNU contributors
in the mid-1980s. I had released a good deal of open-source soft-
ware onto the Net, developing or co-developing several programs
(nethack, Emacs’s VC and GUD modes, xlife, and others) that are
still in wide use today. I thought I knew how it was done.

Linux overturned much of what I thought I knew. I had been
preaching the Unix gospel of small tools, rapid prototyping, and
evolutionary programming for years. But I also believed there was
a certain critical complexity above which a more centralized, a
priori approach was required. I believed that the most important
software (operating systems and really large tools like the Emacs
programming editor) needed to be built like cathedrals, carefully
crafted by individual wizards or small bands of mages working in
splendid isolation, with no beta to be released before its time.

Linus Torvalds’s style of development—release early and often,
delegate everything you can, be open to the point of promiscu-
ity — came as a surprise. No quiet, reverent cathedral-building
here — rather, the Linux community seemed to resemble a great
babbling bazaar of differing agendas and approaches (aptly sym-
bolized by the Linux archive sites, which would take submissions

The Cathedral and the Bazaar

21

22 December 2000 18:18

The Cathedral and the Bazaar

from anyone) out of which a coherent and stable system could
seemingly emerge only by a succession of miracles.

The fact that this bazaar style seemed to work, and work well,
came as a distinct shock. As I learned my way around, I worked
hard not just at individual projects, but also at trying to under-
stand why the Linux world not only didn’t fly apart in confusion
but seemed to go from strength to strength at a speed barely imag-
inable to cathedral-builders.

By mid-1996 I thought I was beginning to understand. Chance
handed me a perfect way to test my theory, in the form of an
open-source project that I could consciously try to run in the
bazaar style. So I did—and it was a significant success.

This is the story of that project. I’ll use it to propose some apho-
risms about effective open-source development. Not all of these
are things I first learned in the Linux world, but we’ll see how the
Linux world gives them particular point. If I’m correct, they’ll
help you understand exactly what it is that makes the Linux com-
munity such a fountain of good software—and, perhaps, they will
help you become more productive yourself.

The Mail Must Get Through

Since 1993 I’d been running the technical side of a small free-
access Internet service provider called Chester County InterLink
(CCIL) in West Chester, Pennsylvania. I co-founded CCIL and
wrote our unique multiuser bulletin-board software—you can
check it out by telnetting to locke.ccil.org. Today it supports
almost 3000 users on 30 lines. The job allowed me 24-hour-a-day
access to the net through CCIL’s 56K line—in fact, the job practi-
cally demanded it!

22

22 December 2000 18:18

I had gotten quite used to instant Internet email. I found having to
periodically telnet over to locke to check my mail annoying. What
I wanted was for my mail to be delivered on snark (my home sys-
tem) so that I would be notified when it arrived and could handle
it using all my local tools.

The Internet’s native mail forwarding protocol, SMTP (Simple
Mail Transfer Protocol), wouldn’t suit, because it works best when
machines are connected full-time, while my personal machine isn’t
always on the Internet and doesn’t have a static IP address. What I
needed was a program that would reach out over my intermittent
dialup connection and pull across my mail to be delivered locally.
I knew such things existed, and that most of them used a simple
application protocol called POP (Post Office Protocol). POP is
now widely supported by most common mail clients, but at the
time, it wasn’t built in to the mail reader I was using.

I needed a POP3 client. So I went out on the Internet and found
one. Actually, I found three or four. I used one of them for a while,
but it was missing what seemed an obvious feature, the ability to
hack the addresses on fetched mail so replies would work
properly.

The problem was this: suppose someone named joe on locke sent
me mail. If I fetched the mail to snark and then tried to reply to it,
my mailer would cheerfully try to ship it to a nonexistent joe on
snark. Hand-editing reply addresses to tack on @ccil.org quickly
got to be a serious pain.

This was clearly something the computer ought to be doing for
me. But none of the existing POP clients knew how! And this
brings us to the first lesson:

1. Every good work of software starts by scratch-
ing a developer’s personal itch.

Perhaps this should have been obvious (it’s long been proverbial
that ‘‘Necessity is the mother of invention’’), but too often soft-
ware developers spend their days grinding away for pay at

The Cathedral and the Bazaar

23

22 December 2000 18:18

The Cathedral and the Bazaar

programs they neither need nor love. But not in the Linux
world — which may explain why the average quality of software
originated in the Linux community is so high.

So, did I immediately launch into a furious whirl of coding up a
brand-new POP3 client to compete with the existing ones? Not on
your life! I looked carefully at the POP utilities I had in hand, ask-
ing myself ‘‘Which one is closest to what I want?’’ Because:

2. Good programmers know what to write. Great
ones know what to rewrite (and reuse).

While I don’t claim to be a great programmer, I try to imitate one.
An important trait of the great ones is constructive laziness. They
know that you get an A not for effort but for results, and that it’s
almost always easier to start from a good partial solution than
from nothing at all.

Linus Torvalds (http://www.tuxedo.org/ ̃ esr/faqs/linus), for exam-
ple, didn’t actually try to write Linux from scratch. Instead, he
started by reusing code and ideas from Minix, a tiny Unix-like
operating system for PC clones. Eventually all the Minix code
went away or was completely rewritten—but while it was there, it
provided scaffolding for the infant that would eventually become
Linux.

In the same spirit, I went looking for an existing POP utility that
was reasonably well coded, to use as a development base.

The source-sharing tradition of the Unix world has always been
friendly to code reuse (this is why the GNU project chose Unix as
a base OS, in spite of serious reservations about the OS itself). The
Linux world has taken this tradition nearly to its technological
limit; it has terabytes of open sources generally available. So
spending time looking for someone else’s almost-good-enough is
more likely to give you good results in the Linux world than any-
where else.

And it did for me. With those I’d found earlier, my second search
made up a total of nine candidates—fetchpop, PopTart, get-mail,

24

22 December 2000 18:18

gwpop, pimp, pop-perl, popc, popmail and upop. The one I first
settled on was ‘fetchpop’ by Seung-Hong Oh. I put my header-
rewrite feature in it, and made various other improvements that
the author accepted into his 1.9 release.

Just a few weeks later, though, I stumbled across the code for
popclient by Carl Harris, and found I had a problem. Though
fetchpop had some good original ideas in it (such as its back-
ground-daemon mode), it could only handle POP3 and was rather
amateurishly coded (Seung-Hong was at that time a bright but
inexperienced programmer, and both traits showed). Carl’s code
was better, quite professional and solid, but his program lacked
several important and rather tricky-to-implement fetchpop fea-
tures (including those I’d coded myself).

Stay or switch? If I switched, I’d be throwing away the coding I’d
already done in exchange for a better development base.

A practical motive to switch was the presence of multiple-protocol
support. POP3 is the most commonly used of the post-office server
protocols, but not the only one. Fetchpop and the other competi-
tion didn’t do POP2, RPOP, or APOP, and I was already having
vague thoughts of perhaps adding IMAP (Internet Message Access
Protocol, the most recently designed and most powerful post-
office protocol, http://www.imap.org) just for fun.

But I had a more theoretical reason to think switching might be as
good an idea as well, something I learned long before Linux.

3. ‘‘Plan to throw one awa y; you will, anyhow. ’ ’
(Fred Brooks, The Mythical Man-Month, Chapter 11)

Or, to put it another way, you often don’t really understand the
problem until after the first time you implement a solution. The
second time, maybe you know enough to do it right. So if you
want to get it right, be ready to start over at least once.1

Well (I told myself) the changes to fetchpop had been my first try.
So I switched.

The Cathedral and the Bazaar

25

22 December 2000 18:18

The Cathedral and the Bazaar

After I sent my first set of popclient patches to Carl Harris on 25
June 1996, I found out that he had basically lost interest in
popclient some time before. The code was a bit dusty, with minor
bugs hanging out. I had many changes to make, and we quickly
agreed that the logical thing for me to do was take over the pro-
gram.

Without my actually noticing, the project had escalated. No
longer was I just contemplating minor patches to an existing POP
client. I took on maintaining an entire one, and there were ideas
bubbling in my head that I knew would probably lead to major
changes.

In a software culture that encourages code-sharing, this is a natu-
ral way for a project to evolve. I was acting out this principle:

4. If you have the right attitude, interesting prob-
lems will find you.

But Carl Harris’s attitude was even more important. He under-
stood that:

5. When you lose interest in a program, your last
duty to it is to hand it off to a competent suc-
cessor.

Without ever having to discuss it, Carl and I knew we had a com-
mon goal of having the best solution out there. The only question
for either of us was whether I could establish that I was a safe pair
of hands. Once I did that, he acted with grace and dispatch. I hope
I will do as well when it comes my turn.

The Importance of Having Users

And so I inherited popclient. Just as importantly, I inherited
popclient’s user base. Users are wonderful things to have, and not
just because they demonstrate that you’re serving a need, that
you’ve done something right. Properly cultivated, they can become
co-developers.

26

22 December 2000 18:18

Another strength of the Unix tradition, one that Linux pushes to a
happy extreme, is that a lot of users are hackers too. Because
source code is available, they can be effective hackers. This can be
tremendously useful for shortening debugging time. Given a bit of
encouragement, your users will diagnose problems, suggest fixes,
and help improve the code far more quickly than you could
unaided.

6. Treating your users as co-developers is your
least-hassle route to rapid code improvement
and effective debugging.

The power of this effect is easy to underestimate. In fact, pretty
well all of us in the open-source world drastically underestimated
how well it would scale up with number of users and against sys-
tem complexity, until Linus Torvalds showed us differently.

In fact, I think Linus’s cleverest and most consequential hack was
not the construction of the Linux kernel itself, but rather his
invention of the Linux development model. When I expressed this
opinion in his presence once, he smiled and quietly repeated some-
thing he has often said: ‘‘I’m basically a very lazy person who likes
to get credit for things other people actually do.’’ Lazy like a fox.
Or, as Robert Heinlein famously wrote of one of his characters,
too lazy to fail.

In retrospect, one precedent for the methods and success of Linux
can be seen in the development of the GNU Emacs Lisp library
and Lisp code archives. In contrast to the cathedral-building style
of the Emacs C core and most other GNU tools, the evolution of
the Lisp code pool was fluid and very user-driven. Ideas and pro-
totype modes were often rewritten three or four times before
reaching a stable final form. And loosely-coupled collaborations
enabled by the Internet, a la Linux, were frequent.

Indeed, my own most successful single hack previous to fetchmail
was probably Emacs VC (version control) mode, a Linux-like col-
laboration by email with three other people, only one of whom
(Richard Stallman, the author of Emacs and founder of the Free

The Cathedral and the Bazaar

27

22 December 2000 18:18

The Cathedral and the Bazaar

Software Foundation, (http://www.fsf.org") I have met to this day.
It was a front-end for SCCS, RCS, and later CVS from within
Emacs that offered ‘‘one-touch’’ version control operations. It
evolved from a tiny, crude sccs.el mode somebody else had writ-
ten. And the development of VC succeeded because, unlike Emacs
itself, Emacs Lisp code could go through release/test/improve gen-
erations very quickly.

The Emacs story is not unique. There have been other software
products with a two-level architecture and a two-tier user commu-
nity that combined a cathedral-mode core and a bazaar-mode
toolbox. One such is MATLAB, a commercial data-analysis and
visualization tool. Users of MATLAB and other products with a
similar structure invariably report that the action, the ferment, the
innovation mostly takes place in the open part of the tool where a
large and varied community can tinker with it.

Release Early, Release Often

Early and frequent releases are a critical part of the Linux devel-
opment model. Most developers (including me) used to believe
this was bad policy for larger than trivial projects, because early
versions are almost by definition buggy versions and you don’t
want to wear out the patience of your users.

This belief reinforced the general commitment to a cathedral-
building style of development. If the overriding objective was for
users to see as few bugs as possible, why then you’d only release a
version every six months (or less often), and work like a dog on
debugging between releases. The Emacs C core was developed this
way. The Lisp library, in effect, was not—because there were
active Lisp archives outside the FSF’s control, where you could go
to find new and development code versions independently of
Emacs’s release cycle.2

The most important of these, the Ohio State Emacs Lisp archive,
anticipated the spirit and many of the features of today’s big
Linux archives. But few of us really thought very hard about what

28

22 December 2000 18:18

we were doing, or about what the very existence of that archive
suggested about problems in the FSF’s cathedral-building develop-
ment model. I made one serious attempt around 1992 to get a lot
of the Ohio code formally merged into the official Emacs Lisp
library. I ran into political trouble and was largely unsuccessful.

But by a year later, as Linux became widely visible, it was clear
that something different and much healthier was going on there.
Linus’s open development policy was the very opposite of cathe-
dral-building. Linux’s Internet archives were burgeoning, multiple
distributions were being floated. And all of this was driven by an
unheard-of frequency of core system releases.

Linus was treating his users as co-developers in the most effective
possible way:

7. Release early. Release often. And listen to your
customers.

Linus’s innovation wasn’t so much in doing quick-turnaround
releases incorporating lots of user feedback (something like this
had been Unix-world tradition for a long time), but in scaling it
up to a level of intensity that matched the complexity of what he
was developing. In those early times (around 1991) it wasn’t
unknown for him to release a new kernel more than once a day!
Because he cultivated his base of co-developers and leveraged the
Internet for collaboration harder than anyone else, this worked.

But how did it work? And was it something I could duplicate, or
did it rely on some unique genius of Linus Torvalds?

I didn’t think so. Granted, Linus is a damn fine hacker. How many
of us could engineer an entire production-quality operating system
kernel from scratch? But Linux didn’t represent any awesome con-
ceptual leap forward. Linus is not (or at least, not yet) an innova-
tive genius of design in the way that, say, Richard Stallman or
James Gosling (of NeWS and Java) are. Rather, Linus seems to me
to be a genius of engineering and implementation, with a sixth
sense for avoiding bugs and development dead-ends and a true

The Cathedral and the Bazaar

29

22 December 2000 18:18

The Cathedral and the Bazaar

knack for finding the minimum-effort path from point A to point
B. Indeed, the whole design of Linux breathes this quality and mir-
rors Linus’s essentially conservative and simplifying design
approach.

So, if rapid releases and leveraging the Internet medium to the hilt
were not accidents but integral parts of Linus’s engineering-genius
insight into the minimum-effort path, what was he maximizing?
What was he cranking out of the machinery?

Put that way, the question answers itself. Linus was keeping his
hacker/users constantly stimulated and rewarded—stimulated by
the prospect of having an ego-satisfying piece of the action,
rewarded by the sight of constant (even daily) improvement in
their work.

Linus was directly aiming to maximize the number of person-
hours thrown at debugging and development, even at the possible
cost of instability in the code and user-base burnout if any serious
bug proved intractable. Linus was behaving as though he believed
something like this:

8. Given a large enough beta-tester and co-devel-
oper base, almost every problem will be charac-
terized quickly and the fix obvious to someone.

Or, less formally, ‘‘Given enough eyeballs, all bugs are shallow.’’ I
dub this: ‘‘Linus’s Law’’.

My original formulation was that every problem ‘‘will be transpar-
ent to somebody’’. Linus demurred that the person who under-
stands and fixes the problem is not necessarily or even usually the
person who first characterizes it. ‘‘Somebody finds the problem,’’
he says, ‘‘and somebody else understands it. And I’ll go on record
as saying that finding it is the bigger challenge.’’ That correction is
important; we’ll see how in the next section, when we examine the
practice of debugging in more detail. But the key point is that both
parts of the process (finding and fixing) tend to happen rapidly.

30

22 December 2000 18:18

In Linus’s Law, I think, lies the core difference underlying the
cathedral-builder and bazaar styles. In the cathedral-builder view
of programming, bugs and development problems are tricky, insid-
ious, deep phenomena. It takes months of scrutiny by a dedicated
few to develop confidence that you’ve winkled them all out. Thus
the long release intervals, and the inevitable disappointment when
long-awaited releases are not perfect.

In the bazaar view, on the other hand, you assume that bugs are
generally shallow phenomena—or, at least, that they turn shallow
pretty quickly when exposed to a thousand eager co-developers
pounding on every single new release. Accordingly you release
often in order to get more corrections, and as a beneficial side
effect you have less to lose if an occasional botch gets out the
door.

And that’s it. That’s enough. If ‘‘Linus’s Law’’ is false, then any
system as complex as the Linux kernel, being hacked over by as
many hands as that kernel was, should at some point have col-
lapsed under the weight of unforseen bad interactions and undis-
covered ‘‘deep’’ bugs. If it’s true, on the other hand, it is sufficient
to explain Linux’s relative lack of bugginess and its continuous
uptimes spanning months or even years.

Maybe it shouldn’t have been such a surprise, at that. Sociologists
years ago discovered that the averaged opinion of a mass of
equally expert (or equally ignorant) observers is quite a bit more
reliable a predictor than the opinion of a single randomly chosen
observer. They called this the Delphi effect. It appears that what
Linus has shown is that this applies even to debugging an operat-
ing system—that the Delphi effect can tame development com-
plexity even at the complexity level of an OS kernel.3

One special feature of the Linux situation that clearly helps along
the Delphi effect is the fact that the contributors for any given
project are self-selected. An early respondent pointed out that con-
tributions are received not from a random sample, but from peo-
ple who are interested enough to use the software, learn about

The Cathedral and the Bazaar

31

22 December 2000 18:18

The Cathedral and the Bazaar

how it works, attempt to find solutions to problems they
encounter, and actually produce an apparently reasonable fix.
Anyone who passes all these filters is highly likely to have some-
thing useful to contribute.

Linus’s Law can be rephrased as ‘‘Debugging is parallelizable’’.
Although debugging requires debuggers to communicate with
some coordinating developer, it doesn’t require significant coordi-
nation between debuggers. Thus it doesn’t fall prey to the same
quadratic complexity and management costs that make adding
developers problematic.

In practice, the theoretical loss of efficiency due to duplication of
work by debuggers almost never seems to be an issue in the Linux
world. One effect of a ‘‘release early and often’’ policy is to mini-
mize such duplication by propagating fed-back fixes quickly.4

Brooks (the author of The Mythical Man-Month) even made an
off-hand observation related to Jeff’s: ‘‘The total cost of maintain-
ing a widely used program is typically 40 percent or more of the
cost of developing it. Surprisingly this cost is strongly affected by
the number of users. More users find more bugs.’’ [Emphasis
added.]

More users find more bugs because adding more users adds more
different ways of stressing the program. This effect is amplified
when the users are co-developers. Each one approaches the task of
bug characterization with a slightly different perceptual set and
analytical toolkit, a different angle on the problem. The Delphi
Effect seems to work precisely because of this variation. In the
specific context of debugging, the variation also tends to reduce
duplication of effort.

So adding more beta-testers may not reduce the complexity of the
current ‘‘deepest’’ bug from the developer’s point of view, but it
increases the probability that someone’s toolkit will be matched to
the problem in such a way that the bug is shallow to that person.

32

22 December 2000 18:18

Linus coppers his bets, too. In case there are serious bugs, Linux
kernel version are numbered in such a way that potential users can
make a choice either to run the last version designated ‘‘stable’’ or
to ride the cutting edge and risk bugs in order to get new features.
This tactic is not yet systematically imitated by most Linux hack-
ers, but perhaps it should be; the fact that either choice is available
makes both more attractive.5

Many Eyeballs Tame Complexity

It’s one thing to observe in the large that the bazaar style greatly
accelerates debugging and code evolution. It’s another to under-
stand exactly how and why it does so at the micro-level of day-to-
day developer and tester behavior. In this section (written three
years after the original paper, using insights by developers who
read it and re-examined their own behavior) we’ll take a hard
look at the actual mechanisms. Non-technically inclined readers
can safely skip to the next section.

One key to understanding is to realize exactly why it is that the
kind of bug report non–source-aware users normally turn in tends
not to be very useful. Non–source-aware users tend to report only
surface symptoms; they take their environment for granted, so
they (a) omit critical background data, and (b) seldom include a
reliable recipe for reproducing the bug.

The underlying problem here is a mismatch between the tester’s
and the developer’s mental models of the program; the tester, on
the outside looking in, and the developer on the inside looking
out. In closed-source development they’re both stuck in these
roles, and tend to talk past each other and find each other deeply
frustrating.

Open-source development breaks this bind, making it far easier
for tester and developer to develop a shared representation
grounded in the actual source code and to communicate effectively
about it. Practically, there is a huge difference in leverage for the
developer between the kind of bug report that just reports

The Cathedral and the Bazaar

33

22 December 2000 18:18

The Cathedral and the Bazaar

externally visible symptoms and the kind that hooks directly to
the developer’s source-code–based mental representation of the
program.

Most bugs, most of the time, are easily nailed given even an
incomplete but suggestive characterization of their error condi-
tions at source-code level. When someone among your beta-testers
can point out, “there’s a boundary problem in line nnn”, or even
just “under conditions X, Y, and Z, this variable rolls over”, a
quick look at the offending code often suffices to pin down the
exact mode of failure and generate a fix.

Thus, source-code awareness by both parties greatly enhances
both good communication and the synergy between what a beta-
tester reports and what the core developer(s) knows. In turn, this
means that the core developers’ time tends to be well conserved,
even with many collaborators.

Another characteristic of the open-source method that conserves
developer time is the communication structure of typical open-
source projects. Earlier I used the term “core developer”; this
reflects a distinction between the project core (typically quite
small; a single core developer is common, and one to three is typi-
cal) and the project halo of beta-testers and available contributors
(which often numbers in the hundreds).

The fundamental problem that traditional software-development
organization addresses is Brooks’s Law: ‘‘Adding more program-
mers to a late project makes it later.’’ More generally, Brooks’s
Law predicts that the complexity and communication costs of a
project rise with the square of the number of developers, while
work done only rises linearly.

Brooks’s Law is founded on experience that bugs tend strongly to
cluster at the interfaces between code written by different people,
and that communications/coordination overhead on a project
tends to rise with the number of interfaces between human beings.
Thus, problems scale with the number of communications paths

34

22 December 2000 18:18

between developers, which scales as the square of the number of
developers (more precisely, according to the formula N*(N–1)/2
where N is the number of developers).

The Brooks’s Law analysis (and the resulting fear of large numbers
in development groups) rests on a hidden assummption: that the
communications structure of the project is necessarily a complete
graph, that everybody talks to everybody else. But on open-source
projects, the halo developers work on what are in effect separable
parallel subtasks and interact with each other very little; code
changes and bug reports stream through the core group, and only
within that small core group do we pay the full Brooksian
overhead.6

There are are still more reasons that source-code–level bug report-
ing tends to be very efficient. They center around the fact that a
single error can often have multiple possible symptoms, manifest-
ing differently depending on details of the user’s usage pattern and
environment. Such errors tend to be exactly the sort of complex
and subtle bugs (such as dynamic-memory-management errors or
nondeterministic interrupt-window artifacts) that are hardest to
reproduce at will or to pin down by static analysis, and which do
the most to create long-term problems in software.

A tester who sends in a tentative source-code–level characteriza-
tion of such a multi-symptom bug (e.g., “It looks to me like there’s
a window in the signal handling near line 1250” or “Where are
you zeroing that buffer?”) may give a developer, otherwise too
close to the code to see it, the critical clue to a half-dozen dis-
parate symptoms. In cases like this, it may be hard or even impos-
sible to know which externally visible misbehaviour was caused
by precisely which bug—but with frequent releases, it’s unneces-
sary to know. Other collaborators will be likely to find out quickly
whether their bug has been fixed or not. In many cases, source-
level bug reports will cause misbehaviours to drop out without
ever having been attributed to any specific fix.

The Cathedral and the Bazaar

35

22 December 2000 18:18

The Cathedral and the Bazaar

Complex multi-symptom errors also tend to have multiple trace
paths from surface symptoms back to the actual bug. Which of the
trace paths a given developer or tester can chase may depend on
subtleties of that person’s environment, and may well change in a
not obviously deterministic way over time. In effect, each devel-
oper and tester samples a semi-random set of the program’s state
space when looking for the etiology of a symptom. The more sub-
tle and complex the bug, the less likely that skill will be able to
guarantee the relevance of that sample.

For simple and easily reproducible bugs, then, the accent will be
on the “semi” rather than the “random”; debugging skill and inti-
macy with the code and its architecture will matter a lot. But for
complex bugs, the accent will be on the “random”. Under these
circumstances many people running traces will be much more
effective than a few people running traces sequentially—even if
the few have a much higher average skill level.

This effect will be greatly amplified if the difficulty of following
trace paths from different surface symptoms back to a bug varies
significantly in a way that can’t be predicted by looking at the
symptoms. A single developer sampling those paths sequentially
will be as likely to pick a difficult trace path on the first try as an
easy one. On the other hand, suppose many people are trying
trace paths in parallel while doing rapid releases. Then it is likely
one of them will find the easiest path immediately, and nail the
bug in a much shorter time. The project maintainer will see that,
ship a new release, and the other people running traces on the
same bug will be able to stop before having spent too much time
on their more difficult traces.7

When Is a Rose Not a Rose?

Having studied Linus’s behavior and formed a theory about why it
was successful, I made a conscious decision to test this theory on
my new (admittedly much less complex and ambitious) project.

36

22 December 2000 18:18

But the first thing I did was reorganize and simplify popclient a
lot. Carl Harris’s implementation was very sound, but exhibited a
kind of unnecessary complexity common to many C program-
mers. He treated the code as central and the data structures as
support for the code. As a result, the code was beautiful but the
data structure design ad hoc and rather ugly (at least by the high
standards of this veteran LISP hacker).

I had another purpose for rewriting besides improving the code
and the data structure design, however. That was to evolve it into
something I understood completely. It’s no fun to be responsible
for fixing bugs in a program you don’t understand.

For the first month or so, then, I was simply following out the
implications of Carl’s basic design. The first serious change I made
was to add IMAP support. I did this by reorganizing the protocol
machines into a generic driver and three method tables (for POP2,
POP3, and IMAP). This and the previous changes illustrate a gen-
eral principle that’s good for programmers to keep in mind, espe-
cially in languages like C that don’t naturally do dynamic typing:

9. Smart data structures and dumb code works a
lot better than the other way around.

Brooks, Chapter 9: ‘‘Show me your flowchart and conceal your
tables, and I shall continue to be mystified. Show me your tables,
and I won’t usually need your flowchart; it’ll be obvious.’’ Allow-
ing for 30 years of terminological/cultural shift, it’s the same
point.

At this point (early September 1996, about six weeks from zero) I
started thinking that a name change might be in order—after all,
it wasn’t just a POP client any more. But I hesitated, because there
was as yet nothing genuinely new in the design. My version of
popclient had yet to develop an identity of its own.

That changed, radically, when popclient learned how to forward
fetched mail to the SMTP port. I’ll get to that in a moment. But
first: I said earlier that I’d decided to use this project to test my

The Cathedral and the Bazaar

37

22 December 2000 18:18

The Cathedral and the Bazaar

theory about what Linus Torvalds had done right. How (you may
well ask) did I do that? In these ways:

• I released early and often (almost never less often than every
10 days; during periods of intense development, once a day).

• I grew my beta list by adding to it everyone who contacted me
about fetchmail.

• I sent chatty announcements to the beta list whenever I
released, encouraging people to participate.

• I listened to my beta-testers, polling them about design deci-
sions and stroking them whenever they sent in patches and
feedback.

The payoff from these simple measures was immediate. From the
beginning of the project, I got bug reports of a quality most devel-
opers would kill for, often with good fixes attached. I got thought-
ful criticism, I got fan mail, I got intelligent feature suggestions.
Which leads to:

10.If you treat your beta-testers as if they’re your
most valuable resource, they will respond by
becoming your most valuable resource.

One interesting measure of fetchmail’s success is the sheer size of
the project beta list, fetchmail-friends. At the time of latest revi-
sion of this paper (November 2000) it has 287 members and is
adding 2 or 3 a week.

Actually, when I revised in late May 1997 I found the list was
beginning to lose members from its high of close to 300 for an
interesting reason. Several people have asked me to unsubscribe
them because fetchmail is working so well for them that they no
longer need to see the list traffic! Perhaps this is part of the normal
life-cycle of a mature bazaar-style project.

38

22 December 2000 18:18

Popclient Becomes Fetchmail

The real turning point in the project was when Harry Hochheiser
sent me his scratch code for forwarding mail to the client
machine’s SMTP port. I realized almost immediately that a reliable
implementation of this feature would make all the other mail
delivery modes next to obsolete.

For many weeks I had been tweaking fetchmail rather incremen-
tally while feeling like the interface design was serviceable but
grubby — inelegant and with too many exiguous options hanging
out all over. The options to dump fetched mail to a mailbox file or
standard output particularly bothered me, but I couldn’t figure out
why.

(If you don’t care about the technicalia of Internet mail, the next
two paragraphs can be safely skipped.)

What I saw when I thought about SMTP forwarding was that
popclient had been trying to do too many things. It had been
designed to be both a mail transport agent (MTA) and a local
delivery agent (MDA). With SMTP forwarding, it could get out of
the MDA business and be a pure MTA, handing off mail to other
programs for local delivery just as sendmail does.

Why mess with all the complexity of configuring a mail delivery
agent or setting up lock-and-append on a mailbox when port 25 is
almost guaranteed to be there on any platform with TCP/IP sup-
port in the first place? Especially when this means retrieved mail is
guaranteed to look like normal sender-initiated SMTP mail, which
is really what we want anyway.

(Back to a higher level . . .)

Even if you didn’t follow the preceding technical jargon, there are
several important lessons here. First, this SMTP-forwarding con-
cept was the biggest single payoff I got from consciously trying to
emulate Linus’s methods. A user gave me this terrific idea—all I
had to do was understand the implications.

The Cathedral and the Bazaar

39

22 December 2000 18:18

The Cathedral and the Bazaar

11.The next best thing to having good ideas is rec-
ognizing good ideas from your users. Sometimes
the latter is better.

Interestingly enough, you will quickly find that if you are com-
pletely and self-deprecatingly truthful about how much you owe
other people, the world at large will treat you as though you did
every bit of the invention yourself and are just being becomingly
modest about your innate genius. We can all see how well this
worked for Linus!

(When I gave my talk at the first Perl Conference in August 1997,
hacker extraordinaire Larry Wall was in the front row. As I got to
the last line above he called out, religious-revival style, ‘‘Tell it, tell
it, brother!’’ The whole audience laughed, because they knew this
had worked for the inventor of Perl, too.)

After a few weeks of running the project in the same spirit, I
began to get similar praise not just from my users but from other
people to whom the word leaked out. I stashed away some of that
email; I’ll look at it again sometime if I ever start wondering
whether my life has been worthwhile :-).

But there are two more fundamental, non-political lessons here
that are general to all kinds of design.

12.Often, the most striking and innova tive solu-
tions come from realizing that your concept of
the problem was wrong.

I had been trying to solve the wrong problem by continuing to
develop popclient as a combined MTA/MDA with all kinds of
funky local delivery modes. Fetchmail’s design needed to be
rethought from the ground up as a pure MTA, a part of the nor-
mal SMTP-speaking Internet mail path.

When you hit a wall in development—when you find yourself
hard put to think past the next patch—it’s often time to ask not
whether you’ve got the right answer, but whether you’re asking
the right question. Perhaps the problem needs to be reframed.

40

22 December 2000 18:18

Well, I had reframed my problem. Clearly, the right thing to do
was (1) hack SMTP forwarding support into the generic driver, (2)
make it the default mode, and (3) eventually throw out all the
other delivery modes, especially the deliver-to-file and deliver-to-
standard-output options.

I hesitated over step 3 for some time, fearing to upset long-time
popclient users dependent on the alternate delivery mechanisms.
In theory, they could immediately switch to .forward files or their
non-sendmail equivalents to get the same effects. In practice the
transition might have been messy.

But when I did it, the benefits proved huge. The cruftiest parts of
the driver code vanished. Configuration got radically simpler—no
more grovelling around for the system MDA and user’s mailbox,
no more worries about whether the underlying OS supports file
locking.

Also, the only way to lose mail vanished. If you specified delivery
to a file and the disk got full, your mail got lost. This can’t happen
with SMTP forwarding because your SMTP listener won’t return
OK unless the message can be delivered or at least spooled for
later delivery.

Also, performance improved (though not so you’d notice it in a
single run). Another not insignificant benefit of this change was
that the manual page got a lot simpler.

Later, I had to bring delivery via a user-specified local MDA back
in order to allow handling of some obscure situations involving
dynamic SLIP. But I found a much simpler way to do it.

The moral? Don’t hesitate to throw away superannuated features
when you can do it without loss of effectiveness. Antoine de Saint-
Exupéry (who was an aviator and aircraft designer when he
wasn’t authoring classic children’s books) said:

13.‘‘Perfection (in design) is achieved not when
there is nothing more to add, but rather when
there is nothing more to take awa y.’’

The Cathedral and the Bazaar

41

22 December 2000 18:18

The Cathedral and the Bazaar

When your code is getting both better and simpler, that is when
you know it’s right. And in the process, the fetchmail design
acquired an identity of its own, different from the ancestral
popclient.

It was time for the name change. The new design looked much
more like a dual of sendmail than the old popclient had; both are
MTAs, but where sendmail pushes then delivers, the new
popclient pulls then delivers. So, two months off the blocks, I
renamed it fetchmail.

There is a more general lesson in this story about how SMTP
delivery came to fetchmail. It is not only debugging that is paral-
lelizable; development and (to a perhaps surprising extent) explo-
ration of design space is, too. When your development mode is
rapidly iterative, development and enhancement may become spe-
cial cases of debugging—fixing ‘bugs of omission’ in the original
capabilities or concept of the software.

Even at a higher level of design, it can be very valuable to have
lots of co-developers random-walking through the design space
near your product. Consider the way a puddle of water finds a
drain, or better yet how ants find food: exploration essentially by
diffusion, followed by exploitation mediated by a scalable com-
munication mechanism. This works very well; as with Harry
Hochheiser and me, one of your outriders may well find a huge
win nearby that you were just a little too close-focused to see.

Fetchmail Grows Up

There I was with a neat and innovative design, code that I knew
worked well because I used it every day, and a burgeoning beta
list. It gradually dawned on me that I was no longer engaged in a
trivial personal hack that might happen to be useful to few other
people. I had my hands on a program that every hacker with a
Unix box and a SLIP/PPP mail connection really needs.

42

22 December 2000 18:18

With the SMTP forwarding feature, it pulled far enough in front
of the competition to potentially become a category killer, one of
those classic programs that fills its niche so competently that the
alternatives are not just discarded but almost forgotten.

I think you can’t really aim or plan for a result like this. You have
to get pulled into it by design ideas so powerful that afterward the
results just seem inevitable, natural, even foreordained. The only
way to try for ideas like that is by having lots of ideas—or by hav-
ing the engineering judgment to take other people’s good ideas
beyond where the originators thought they could go.

Andy Tanenbaum had the original idea to build a simple native
Unix for IBM PCs, for use as a teaching tool (he called it Minix).
Linus Torvalds pushed the Minix concept further than Andrew
probably thought it could go—and it grew into something won-
derful. In the same way (though on a smaller scale), I took some
ideas by Carl Harris and Harry Hochheiser and pushed them
hard. Neither of us was original in the romantic way people think
is genius. But then, most science and engineering and software
development isn’t done by original genius, hacker mythology to
the contrary.

The results were pretty heady stuff all the same—in fact, just the
kind of success every hacker lives for! And they meant I would
have to set my standards even higher. To make fetchmail as good
as I now saw it could be, I’d have to write not just for my own
needs, but also include and support features necessary to others
outside my orbit. And do that while keeping the program simple
and robust.

The first and overwhelmingly most important feature I wrote after
realizing this was multidrop support—the ability to fetch mail
from mailboxes that had accumulated all mail for a group of
users, and then route each piece of mail to its individual recipients.

I decided to add the multidrop support partly because some users
were clamoring for it, but mostly because I thought it would shake

The Cathedral and the Bazaar

43

22 December 2000 18:18

The Cathedral and the Bazaar

bugs out of the single-drop code by forcing me to deal with
addressing in full generality. And so it proved. Getting RFC 822
(http://info.internet.isi.edu:80/in-notes/rfc/files/rfc822.txt) address
parsing right took me a remarkably long time, not because any
individual piece of it is hard but because it involved a pile of inter-
dependent and fussy details.

But multidrop addressing turned out to be an excellent design
decision as well. Here’s how I knew:

14.Any tool should be useful in the expected way,
but a truly great tool lends itself to uses you
never expected.

The unexpected use for multidrop fetchmail is to run mailing lists
with the list kept, and alias expansion done, on the client side of
the Internet connection. This means someone running a personal
machine through an ISP account can manage a mailing list with-
out continuing access to the ISP’s alias files.

Another important change demanded by my beta-testers was sup-
port for 8-bit MIME (Multipurpose Internet Mail Extensions)
operation. This was pretty easy to do, because I had been careful
to keep the code 8-bit clean (that is, to not press the 8th bit,
unused in the ASCII character set, into service to carry informa-
tion within the program). Not because I anticipated the demand
for this feature, but rather in obedience to another rule:

15.When writing gateway software of any kind, take
pains to disturb the data stream as little as pos-
sible — and never throw away information unless the
recipient forces you to!

Had I not obeyed this rule, 8-bit MIME support would have been
difficult and buggy. As it was, all I had to do is read the MIME
standard (RFC 1652, http://info.internet.isi.edu:80/in-notes/rfc/
files/rfc1652.txt) and add a trivial bit of header-generation logic.

Some European users bugged me into adding an option to limit
the number of messages retrieved per session (so they can control
costs from their expensive phone networks). I resisted this for a

44

22 December 2000 18:18

long time, and I’m still not entirely happy about it. But if you’re
writing for the world, you have to listen to your customers—this
doesn’t change just because they’re not paying you in money.

A Few More Lessons from Fetchmail

Before we go back to general software-engineering issues, there
are a couple more specific lessons from the fetchmail experience to
ponder. Nontechnical readers can safely skip this section.

The rc (control) file syntax includes optional ‘noise’ keywords that
are entirely ignored by the parser. The English-like syntax they
allow is considerably more readable than the traditional terse key-
word-value pairs you get when you strip them all out.

These started out as a late-night experiment when I noticed how
much the rc file declarations were beginning to resemble an imper-
ative minilanguage. (This is also why I changed the original
popclient ‘‘server’’ keyword to ‘‘poll’’).

It seemed to me that trying to make that imperative minilanguage
more like English might make it easier to use. Now, although I’m
a convinced partisan of the ‘‘make it a language’’ school of design
as exemplified by Emacs and HTML and many database engines, I
am not normally a big fan of ‘‘English-like’’ syntaxes.

Traditionally programmers have tended to favor control syntaxes
that are very precise and compact and have no redundancy at all.
This is a cultural legacy from when computing resources were
expensive, so parsing stages had to be as cheap and simple as pos-
sible. English, with about 50% redundancy, looked like a very
inappropriate model then.

This is not my reason for normally avoiding English-like syntaxes;
I mention it here only to demolish it. With cheap cycles and core,
terseness should not be an end in itself. Nowadays it’s more
important for a language to be convenient for humans than to be
cheap for the computer.

The Cathedral and the Bazaar

45

22 December 2000 18:18

The Cathedral and the Bazaar

There remain, however, good reasons to be wary. One is the com-
plexity cost of the parsing stage—you don’t want to raise that to
the point where it’s a significant source of bugs and user confusion
in itself. Another is that trying to make a language syntax English-
like often demands that the ‘‘English’’ it speaks be bent seriously
out of shape, so much so that the superficial resemblance to natu-
ral language is as confusing as a traditional syntax would have
been. (You see this bad effect in a lot of so-called ‘‘fourth genera-
tion’’ and commercial database-query languages.)

The fetchmail control syntax seems to avoid these problems
because the language domain is extremely restricted. It’s nowhere
near a general-purpose language; the things it says simply are not
very complicated, so there’s little potential for confusion in mov-
ing mentally between a tiny subset of English and the actual con-
trol language. I think there may be a broader lesson here:

16.When your language is nowhere near Turing-
complete, syntactic sugar can be your friend.

Another lesson is about security by obscurity. Some fetchmail
users asked me to change the software to store passwords
encrypted in the rc file, so snoopers wouldn’t be able to casually
see them.

I didn’t do it, because this doesn’t actually add protection. Anyone
who’s acquired permissions to read your rc file will be able to run
fetchmail as you anyway—and if it’s your password they’re after,
they’d be able to rip the necessary decoder out of the fetchmail
code itself to get it.

All .fetchmailrc password encryption would have done is give a
false sense of security to people who don’t think very hard. The
general rule here is:

17.A security system is only as secure as its secret.
Beware of pseudo-secrets.

46

22 December 2000 18:18

Necessary Preconditions
for the Bazaar Style

Early reviewers and test audiences for this essay consistently raised
questions about the preconditions for successful bazaar-style
development, including both the qualifications of the project
leader and the state of code at the time one goes public and starts
to try to build a co-developer community.

It’s fairly clear that one cannot code from the ground up in bazaar
style.8 One can test, debug and improve in bazaar style, but it
would be very hard to originate a project in bazaar mode. Linus
didn’t try it. I didn’t either. Your nascent developer community
needs to have something runnable and testable to play with.

When you start community-building, what you need to be able to
present is a plausible promise. Your program doesn’t have to work
particularly well. It can be crude, buggy, incomplete, and poorly
documented. What it must not fail to do is (a) run, and (b) con-
vince potential co-developers that it can be evolved into something
really neat in the foreseeable future.

Linux and fetchmail both went public with strong, attractive basic
designs. Many people thinking about the bazaar model as I have
presented it have correctly considered this critical, then jumped
from that to the conclusion that a high degree of design intuition
and cleverness in the project leader is indispensable.

But Linus got his design from Unix. I got mine initially from the
ancestral popclient (though it would later change a great deal,
much more proportionately speaking than has Linux). So does the
leader/coordinator for a bazaar-style effort really have to have
exceptional design talent, or can he get by through leveraging the
design talent of others?

I think it is not critical that the coordinator be able to originate
designs of exceptional brilliance, but it is absolutely critical that
the coordinator be able to recognize good design ideas from
others.

The Cathedral and the Bazaar

47

22 December 2000 18:18

The Cathedral and the Bazaar

Both the Linux and fetchmail projects show evidence of this.
Linus, while not (as previously discussed) a spectacularly original
designer, has displayed a powerful knack for recognizing good
design and integrating it into the Linux kernel. And I have already
described how the single most powerful design idea in fetchmail
(SMTP forwarding) came from somebody else.

Early audiences of this essay complimented me by suggesting that
I am prone to undervalue design originality in bazaar projects
because I have a lot of it myself, and therefore take it for granted.
There may be some truth to this; design (as opposed to coding or
debugging) is certainly my strongest skill.

But the problem with being clever and original in software design
is that it gets to be a habit—you start reflexively making things
cute and complicated when you should be keeping them robust
and simple. I have had projects crash on me because I made this
mistake, but I managed to avoid this with fetchmail.

So I believe the fetchmail project succeeded partly because I
restrained my tendency to be clever; this argues (at least) against
design originality being essential for successful bazaar projects.
And consider Linux. Suppose Linus Torvalds had been trying to
pull off fundamental innovations in operating system design dur-
ing the development; does it seem at all likely that the resulting
kernel would be as stable and successful as what we have?

A certain base level of design and coding skill is required, of
course, but I expect almost anybody seriously thinking of launch-
ing a bazaar effort will already be above that minimum. The open-
source community’s internal market in reputation exerts subtle
pressure on people not to launch development efforts they’re not
competent to follow through on. So far this seems to have worked
pretty well.

There is another kind of skill not normally associated with soft-
ware development which I think is as important as design clever-
ness to bazaar projects—and it may be more important. A bazaar

48

22 December 2000 18:18

project coordinator or leader must have good people and commu-
nications skills.

This should be obvious. In order to build a development commu-
nity, you need to attract people, interest them in what you’re
doing, and keep them happy about the amount of work they’re
doing. Technical sizzle will go a long way towards accomplishing
this, but it’s far from the whole story. The personality you project
matters, too.

It is not a coincidence that Linus is a nice guy who makes people
like him and want to help him. It’s not a coincidence that I’m an
energetic extrovert who enjoys working a crowd and has some of
the delivery and instincts of a stand-up comic. To make the bazaar
model work, it helps enormously if you have at least a little skill at
charming people.

The Social Context of Open-Source
Software

It is truly written: the best hacks start out as personal solutions to
the author’s everyday problems, and spread because the problem
turns out to be typical for a large class of users. This takes us back
to the matter of rule 1, restated in a perhaps more useful way:

18.To solve an interesting problem, start by finding
a problem that is interesting to you.

So it was with Carl Harris and the ancestral popclient, and so
with me and fetchmail. But this has been understood for a long
time. The interesting point, the point that the histories of Linux
and fetchmail seem to demand we focus on, is the next stage—the
evolution of software in the presence of a large and active commu-
nity of users and co-developers.

In The Mythical Man-Month, Fred Brooks observed that program-
mer time is not fungible; adding developers to a late software pro-
ject makes it later. As we’ve seen previously, he argued that the
complexity and communication costs of a project rise with the

The Cathedral and the Bazaar

49

22 December 2000 18:18

The Cathedral and the Bazaar

square of the number of developers, while work done only rises
linearly. Brooks’s Law has been widely regarded as a truism. But
we’ve examined in this essay a number of ways in which the pro-
cess of open-source development falsifies the assumptionms
behind it—and, empirically, if Brooks’s Law were the whole pic-
ture, Linux would be impossible.

Gerald Weinberg’s classic The Psychology of Computer Program-
ming supplied what, in hindsight, we can see as a vital correction
to Brooks. In his discussion of egoless programming, Weinberg
observed that in shops where developers are not territorial about
their code, and encourage other people to look for bugs and
potential improvements in it, improvement happens dramatically
faster than elsewhere. (Recently, Kent Beck’s ’extreme program-
ming’ technique of deploying coders in pairs who look over one
another’s shoulders might be seen as an attempt to force this
effect.)

Weinberg’s choice of terminology has perhaps prevented his analy-
sis from gaining the acceptance it deserved—one has to smile at
the thought of describing Internet hackers as egoless. But I think
his argument looks more compelling today than ever.

The bazaar method, by harnessing the full power of the egoless
programming effect, strongly mitigates the effect of Brooks’s Law.
The principle behind Brooks’s Law is not repealed, but given a
large developer population and cheap communications its effects
can be swamped by competing nonlinearities that are not other-
wise visible. This resembles the relationship between Newtonian
and Einsteinian physics—the older system is still valid at low ener-
gies, but if you push mass and velocity high enough you get sur-
prises like nuclear explosions or Linux.

The history of Unix should have prepared us for what we’re learn-
ing from Linux (and what I’ve verified experimentally on a smaller
scale by deliberately copying Linus’s methods 9). That is, while
coding remains an essentially solitary activity, the really great
hacks come from harnessing the attention and brainpower of

50

22 December 2000 18:18

entire communities. The developer who uses only his or her own
brain in a closed project is going to fall behind the developer who
knows how to create an open, evolutionary context in which feed-
back exploring the design space, code contributions, bug-spotting,
and other improvements come from from hundreds (perhaps thou-
sands) of people.

But the traditional Unix world was prevented from pushing this
approach to the ultimate by several factors. One was the legal
contraints of various licenses, trade secrets, and commercial inter-
ests. Another (in hindsight) was that the Internet wasn’t yet good
enough.

Before cheap Internet, there were some geographically compact
communities where the culture encouraged Weinberg’s egoless
programming, and a developer could easily attract a lot of skilled
kibitzers and co-developers. Bell Labs, the MIT AI and LCS labs,
UC Berkeley—these became the home of innovations that are leg-
endary and still potent.

Linux was the first project for which a conscious and successful
effort to use the entire world as its talent pool was made. I don’t
think it’s a coincidence that the gestation period of Linux coin-
cided with the birth of the World Wide Web, and that Linux left
its infancy during the same period in 1993–1994 that saw the
takeoff of the ISP industry and the explosion of mainstream inter-
est in the Internet. Linus was the first person who learned how to
play by the new rules that pervasive Internet access made possible.

While cheap Internet was a necessary condition for the Linux
model to evolve, I think it was not by itself a sufficient condition.
Another vital factor was the development of a leadership style and
set of cooperative customs that could allow developers to attract
co-developers and get maximum leverage out of the medium.

But what is this leadership style and what are these customs? They
cannot be based on power relationships—and even if they could
be, leadership by coercion would not produce the results we see.

The Cathedral and the Bazaar

51

22 December 2000 18:18

The Cathedral and the Bazaar

Weinberg quotes the autobiography of the 19th-century Russian
anarchist Pyotr Alexeyvich Kropotkin’s Memoirs of a Revolution-
ist to good effect on this subject:

Having been brought up in a serf-owner’s family, I entered
acti ve life, like all young men of my time, with a great
deal of confidence in the necessity of commanding, order-
ing, scolding, punishing and the like. But when, at an
early stage, I had to manage serious enterprises and to
deal with [free] men, and when each mistake would lead
at once to heavy consequences, I began to appreciate the
difference between acting on the principle of command
and discipline and acting on the principle of common
understanding. The former works admirably in a military
parade, but it is worth nothing where real life is con-
cerned, and the aim can be achieved only through the
severe effort of many converging wills.

The ‘‘severe effort of many converging wills’’ is precisely what a
project like Linux requires—and the ‘‘principle of command’’ is
effectively impossible to apply among volunteers in the anarchist’s
paradise we call the Internet. To operate and compete effectively,
hackers who want to lead collaborative projects have to learn how
to recruit and energize effective communities of interest in the
mode vaguely suggested by Kropotkin’s ‘‘principle of understand-
ing’’. They must learn to use Linus’s Law.10

Earlier, I referred to the Delphi Effect as a possible explanation for
Linus’s Law. But more powerful analogies to adaptive systems in
biology and economics also irresistably suggest themselves. The
Linux world behaves in many respects like a free market or an
ecology, a collection of selfish agents attempting to maximize util-
ity, which in the process produces a self-correcting spontaneous
order more elaborate and efficient than any amount of central
planning could have achieved. Here, then, is the place to seek the
‘‘principle of understanding’’.

52

22 December 2000 18:18

The ‘‘utility function’’ Linux hackers are maximizing is not classi-
cally economic, but is the intangible of their own ego satisfaction
and reputation among other hackers. (One may call their motiva-
tion ‘‘altruistic’’, but this ignores the fact that altruism is itself a
form of ego satisfaction for the altruist.) Voluntary cultures that
work this way are not actually uncommon; one other in which I
have long participated is science fiction fandom, which unlike
hackerdom has long explicitly recognized ‘‘egoboo’’ (ego-boosting,
or the enhancement of one’s reputation among other fans) as the
basic drive behind volunteer activity.

Linus, by successfully positioning himself as the gatekeeper of a
project in which the development is mostly done by others, and
nurturing interest in the project until it became self-sustaining, has
shown an acute grasp of Kropotkin’s ‘‘principle of shared under-
standing’’. This quasi-economic view of the Linux world enables
us to see how that understanding is applied.

We may view Linus’s method as a way to create an efficient mar-
ket in ‘‘egoboo’’—to connect the selfishness of individual hackers
as firmly as possible to difficult ends that can only be achieved by
sustained cooperation. With the fetchmail project I have shown
(albeit on a smaller scale) that his methods can be duplicated with
good results. Perhaps I have even done it a bit more consciously
and systematically than he.

Many people (especially those who politically distrust free mar-
kets) would expect a culture of self-directed egoists to be frag-
mented, territorial, wasteful, secretive, and hostile. But this
expectation is clearly falsified by (to give just one example) the
stunning variety, quality, and depth of Linux documentation. It is
a hallowed given that programmers hate documenting; how is it,
then, that Linux hackers generate so much documentation? Evi-
dently Linux’s free market in egoboo works better to produce vir-
tuous, other-directed behavior than the massively-funded
documentation shops of commercial software producers.

The Cathedral and the Bazaar

53

22 December 2000 18:18

The Cathedral and the Bazaar

Both the fetchmail and Linux kernel projects show that by
properly rewarding the egos of many other hackers, a strong
developer/coordinator can use the Internet to capture the benefits
of having lots of co-developers without having a project collapse
into a chaotic mess. So to Brooks’s Law, I counter-propose the fol-
lowing:

19.Provided the development coordinator has a
communications medium at least as good as the
Internet, and knows how to lead without coer-
cion, many heads are inevitably better than one.

I think the future of open-source software will increasingly belong
to people who know how to play Linus’s game, people who leave
behind the cathedral and embrace the bazaar. This is not to say
that individual vision and brilliance will no longer matter; rather, I
think that the cutting edge of open-source software will belong to
people who start from individual vision and brilliance, then
amplify it through the effective construction of voluntary commu-
nities of interest.

Perhaps this is not only the future of open-source software. No
closed-source developer can match the pool of talent the Linux
community can bring to bear on a problem. Very few could afford
even to hire the more than 200 (1999: 600, 2000: 800) people
who have contributed to fetchmail!

Perhaps in the end the open-source culture will triumph not
because cooperation is morally right or software ‘‘hoarding’’ is
morally wrong (assuming you believe the latter, which neither
Linus nor I do), but simply because the closed-source world can-
not win an evolutionary arms race with open-source communities
that can put orders of magnitude more skilled time into a
problem.

54

22 December 2000 18:18

On Management and
the Maginot Line

The original Cathedral and Bazaar paper of 1997 ended with the
vision above—that of happy networked hordes of programmer/
anarchists outcompeting and overwhelming the hierarchical world
of conventional closed software.

A good many skeptics weren’t convinced, however; and the ques-
tions they raise deserve a fair engagement. Most of the objections
to the bazaar argument come down to the claim that its propo-
nents have underestimated the productivity-multiplying effect of
conventional management.

Traditionally-minded software-development managers often object
that the casualness with which project groups form and change
and dissolve in the open-source world negates a significant part of
the apparent advantage of numbers that the open-source commu-
nity has over any single closed-source developer. They would
observe that in software development it is really sustained effort
over time and the degree to which customers can expect continu-
ing investment in the product that matters, not just how many
people have thrown a bone in the pot and left it to simmer.

There is something to this argument, to be sure; in fact, I have
developed the idea that expected future service value is the key to
the economics of software production in the essay The Magic
Cauldron .

But this argument also has a major hidden problem; its implicit
assumption that open-source development cannot deliver such sus-
tained effort. In fact, there have been open-source projects that
maintained a coherent direction and an effective maintainer com-
munity over quite long periods of time without the kinds of incen-
tive structures or institutional controls that conventional
management finds essential. The development of the GNU Emacs
editor is an extreme and instructive example; it has absorbed the
efforts of hundreds of contributors over 15 years into a unified

The Cathedral and the Bazaar

55

22 December 2000 18:18

The Cathedral and the Bazaar

architectural vision, despite high turnover and the fact that only
one person (its author) has been continuously active during all
that time. No closed-source editor has ever matched this longevity
record.

This suggests a reason for questioning the advantages of conven-
tionally-managed software development that is independent of the
rest of the arguments over cathedral versus bazaar mode. If it’s
possible for GNU Emacs to express a consistent architectural
vision over 15 years, or for an operating system like Linux to do
the same over 8 years of rapidly changing hardware and platform
technology; and if (as is indeed the case) there have been many
well-architected open-source projects of more than 5 years dura-
tion — then we are entitled to wonder what, if anything, the
tremendous overhead of conventionally managed development is
actually buying us.

Whatever it is certainly doesn’t include reliable execution by dead-
line, or on budget, or to all features of the specification; it’s a rare
managed project that meets even one of these goals, let alone all
three. It also does not appear to be ability to adapt to changes in
technology and economic context during the project lifetime,
either; the open-source community has proven far more effective
on that score (as one can readily verify, for example, by comparing
the 30-year history of the Internet with the short half-lives of pro-
prietary networking technologies—or the cost of the 16-bit to
32-bit transition in Microsoft Windows with the nearly effortless
upward migration of Linux during the same period, not only
along the Intel line of development but to more than a dozen other
hardware platforms, including the 64-bit Alpha as well).

One thing many people think the traditional mode buys you is
somebody to hold legally liable and potentially recover compensa-
tion from if the project goes wrong. But this is an illusion; most
software licenses are written to disclaim even warranty of mer-
chantability, let alone performance—and cases of successful recov-
ery for software nonperformance are vanishingly rare. Even if they

56

22 December 2000 18:18

were common, feeling comforted by having somebody to sue
would be missing the point. You didn’t want to be in a lawsuit;
you wanted working software.

So what is all that management overhead buying?

In order to understand that, we need to understand what software
development managers believe they do. A woman I know who
seems to be very good at this job says software project manage-
ment has five functions:

• To define goals and keep everybody pointed in the same direc-
tion

• To monitor and make sure crucial details don’t get skipped

• To motivate people to do boring but necessary drudgework

• To organize the deployment of people for best productivity

• To marshal resources needed to sustain the project

Apparently worthy goals, all of these; but under the open-source
model, and in its surrounding social context, they can begin to
seem strangely irrelevant. We’ll take them in reverse order.

My friend reports that a lot of resource marshalling is basically
defensive; once you have your people and machines and office
space, you have to defend them from peer managers competing for
the same resources and from higher-ups trying to allocate the most
efficient use of a limited pool.

But open-source developers are volunteers, self-selected for both
interest and ability to contribute to the projects they work on (and
this remains generally true even when they are being paid a salary
to hack open source). The volunteer ethos tends to take care of the
‘attack’ side of resource-marshalling automatically; people bring
their own resources to the table. And there is little or no need for
a manager to ‘play defense’ in the conventional sense.

Anyway, in a world of cheap PCs and fast Internet links, we find
pretty consistently that the only really limiting resource is skilled
attention. Open-source projects, when they founder, essentially

The Cathedral and the Bazaar

57

22 December 2000 18:18

The Cathedral and the Bazaar

never do so for want of machines or links or office space; they die
only when the developers themselves lose interest.

That being the case, it’s doubly important that open-source hack-
ers organize themselves for maximum productivity by self-selec-
tion — and the social milieu selects ruthlessly for competence. My
friend, familiar with both the open-source world and large closed
projects, believes that open source has been successful partly
because its culture only accepts the most talented 5% or so of the
programming population. She spends most of her time organizing
the deployment of the other 95%, and has thus observed first-
hand the well-known variance of a factor of one hundred in pro-
ductivity between the most able programmers and the merely
competent.

The size of that variance has always raised an awkward question:
would individual projects, and the field as a whole, be better off
without more than 50% of the least able in it? Thoughtful man-
agers have understood for a long time that if conventional soft-
ware management’s only function were to convert the least able
from a net loss to a marginal win, the game might not be worth
the candle.

The success of the open-source community sharpens this question
considerably, by providing hard evidence that it is often cheaper
and more effective to recruit self-selected volunteers from the
Internet than it is to manage buildings full of people who would
rather be doing something else.

Which brings us neatly to the question of motivation. An equiva-
lent and often-heard way to state my friend’s point is that tradi-
tional development management is a necessary compensation for
poorly motivated programmers who would not otherwise turn out
good work.

This answer usually travels with a claim that the open-source
community can only be relied on to do work that is “sexy” or
technically sweet; anything else will be left undone (or done only

58

22 December 2000 18:18

poorly) unless it’s churned out by money-motivated cubicle peons
with managers cracking whips over them. I address the psycholog-
ical and social reasons for being skeptical of this claim in Home-
steading the Noosphere. For present purposes, however, I think it’s
more interesting to point out the implications of accepting it as
true.

If the conventional, closed-source, heavily-managed style of soft-
ware development is really defended only by a sort of Maginot
Line of problems conducive to boredom, then it’s going to remain
viable in each individual application area for only so long as
nobody finds those problems really interesting and nobody else
finds any way to route around them. Because the moment there is
open-source competition for a boring piece of software, customers
are going to know that it was finally tackled by someone who
chose that problem to solve because of a fascination with the
problem itself—which, in software as in other kinds of creative
work, is a far more effective motivator than money alone.

Having a conventional management structure solely in order to
motivate, then, is probably good tactics but bad strategy; a short-
term win, but in the longer term a surer loss.

So far, conventional development management looks like a bad
bet now against open source on two points (resource marshalling,
organization), and like it’s living on borrowed time with respect to
a third (motivation). And the poor beleaguered conventional man-
ager is not going to get any succour from the monitoring issue; the
strongest argument the open-source community has is that decen-
tralized peer review trumps all the conventional methods for try-
ing to ensure that details don’t get slipped.

Can we save defining goals as a justification for the overhead of
conventional software project management? Perhaps; but to do so,
we’ll need good reason to believe that management committees
and corporate roadmaps are more successful at defining worthy
and widely shared goals than the project leaders and tribal elders
who fill the analogous role in the open-source world.

The Cathedral and the Bazaar

59

22 December 2000 18:18

The Cathedral and the Bazaar

That is on the face of it a pretty hard case to make. And it’s not so
much the open-source side of the balance (the longevity of Emacs,
or Linus Torvalds’s ability to mobilize hordes of developers with
talk of world domination) that makes it tough. Rather, it’s the
demonstrated awfulness of conventional mechanisms for defining
the goals of software projects.

One of the best-known folk theorems of software engineering is
that 60 to 75% of conventional software projects either are never
completed or are rejected by their intended users. If that range is
anywhere near true (and I’ve never met a manager of any experi-
ence who disputes it), then more projects than not are being aimed
at goals that are either (a) not realistically attainable, or (b) just
plain wrong.

This, more than any other problem, is the reason that in today’s
software engineering world the very phrase ‘‘management commit-
tee’’ is likely to send chills down the hearer’s spine — even (or per-
haps especially) if the hearer is a manager. The days when only
programmers griped about this pattern are long past; Dilbert car-
toons hang over executives’ desks now.

Our reply, then, to the traditional software development manager,
is simple—if the open-source community has really underesti-
mated the value of conventional management, why do so many of
you display contempt for your own process?

Once again the example of the open-source community sharpens
this question considerably—because we have fun doing what we
do. Our creative play has been racking up technical, market-share,
and mind-share successes at an astounding rate. We’re proving not
only that we can do better software, but that joy is an asset.

Two and a half years after the first version of this essay, the most
radical thought I can offer to close with is no longer a vision of an
open-source–dominated software world; that, after all, looks plau-
sible to a lot of sober people in suits these days.

60

22 December 2000 18:18

Rather, I want to suggest what may be a wider lesson about soft-
ware (and probably about every kind of creative or professional
work). Human beings generally take pleasure in a task when it
falls in a sort of optimal-challenge zone; not so easy as to be bor-
ing, not too hard to achieve. A happy programmer is one who is
neither underutilized nor weighed down with ill-formulated goals
and stressful process friction. Enjoyment predicts efficiency.

Relating to your own work process with fear and loathing (even in
the displaced, ironic way suggested by hanging up Dilbert car-
toons) should therefore be regarded in itself as a sign that the pro-
cess has failed. Joy, humor, and playfulness are indeed assets; it
was not mainly for the alliteration that I wrote of “happy hordes”
above, and it is no mere joke that the Linux mascot is a cuddly,
neotenous penguin.

It may well turn out that one of the most important effects of
open source’s success will be to teach us that play is the most eco-
nomically efficient mode of creative work.

Epilog: Netscape Embraces
the Bazaar

It’s a strange feeling to realize you’re helping make history

On 22 January 1998, approximately seven months after I first
published The Cathedral and the Bazaar, Netscape Communi-
cations, Inc. announced plans to give away the source for
Netscape Communicator (see http://www.netscape.com/newsref/
pr/newsrelease558.html). I had had no clue this was going to hap-
pen before the day of the announcement.

Eric Hahn, executive vice president and chief technology officer at
Netscape, emailed me shortly afterwards as follows: ‘‘On behalf of
everyone at Netscape, I want to thank you for helping us get to
this point in the first place. Your thinking and writings were fun-
damental inspirations to our decision.’’

The Cathedral and the Bazaar

61

22 December 2000 18:18

The Cathedral and the Bazaar

The following week I flew out to Silicon Valley at Netscape’s invi-
tation for a day-long strategy conference (on 4 February 1998)
with some of their top executives and technical people. We
designed Netscape’s source-release strategy and license together.

A few days later I wrote the following:

Netscape is about to provide us with a large-scale, real-
world test of the bazaar model in the commercial world.
The open-source culture now faces a danger; if Netscape’s
execution doesn’t work, the open-source concept may be
so discredited that the commercial world won’t touch it
again for another decade.

On the other hand, this is also a spectacular opportunity.
Initial reaction to the move on Wall Street and elsewhere
has been cautiously positi ve. We’re being given a chance
to prove ourselves, too. If Netscape regains substantial
market share through this move, it just may set off a long-
overdue revolution in the software industry.

The next year should be a very instructive and interesting
time.

And indeed it was. As I write in mid-2000, the development of
what was later named Mozilla has been only a qualified success. It
achieved Netscape’s original goal, which was to deny Microsoft a
monopoly lock on the browser market. It has also achieved some
dramatic successes (notably the release of the next-generation
Gecko rendering engine).

However, it has not yet garnered the massive development effort
from outside Netscape that the Mozilla founders had originally
hoped for. The problem here seems to be that for a long time the
Mozilla distribution actually broke one of the basic rules of the
bazaar model; it didn’t ship with something potential contributors
could easily run and see working. (Until more than a year after
release, building Mozilla from source required a license for the
proprietary Motif library.)

62

22 December 2000 18:18

Most negatively (from the point of view of the outside world) the
Mozilla group didn’t ship a production-quality browser for two
and a half years after the project launch—and in 1999 one of the
project’s principals caused a bit of a sensation by resigning, com-
plaining of poor management and missed opportunities. ‘‘Open
source,’’ he correctly observed, ‘‘is not magic pixie dust.’’

And indeed it is not. The long-term prognosis for Mozilla looks
dramatically better now (in November 2000) than it did at the
time of Jamie Zawinski’s resignation letter—in the last few weeks
the nightly releases have finally passed the critical threshold to
production usability. But Jamie was right to point out that going
open will not necessarily save an existing project that suffers from
ill-defined goals or spaghetti code or any of the software engineer-
ing’s other chronic ills. Mozilla has managed to provide an exam-
ple simultaneously of how open source can succeed and how it
could fail.

In the mean time, however, the open-source idea has scored suc-
cesses and found backers elsewhere. Since the Netscape release
we’ve seen a tremendous explosion of interest in the open-source
development model, a trend both driven by and driving the con-
tinuing success of the Linux operating system. The trend Mozilla
touched off is continuing at an accelerating rate.

The Cathedral and the Bazaar

63

22 December 2000 18:18

Homesteading the Noosphere

✦ ✦ ✦

After observing a contradiction between the official ideol-

ogy defined by open-source licenses and the actual behav-

ior of hackers, I examine the actual customs that regulate

the ownership and control of open-source software. I

show that they imply an underlying theory of property

rights homologous to the Lockean theory of land tenure. I

then relate that to an analysis of the hacker culture as a

‘gift culture’ in which participants compete for prestige by

gi ving time, energy, and creativity away. Finally, I examine

the consequences of this analysis for conflict resolution in

the culture, and develop some prescriptive implications.

65

22 December 2000 17:46

22 December 2000 17:46

An Introductory Contradiction

Anyone who watches the busy, tremendously productive world of
Internet open-source software for a while is bound to notice an
interesting contradiction between what open-source hackers say
they believe and the way they actually behave—between the offi-
cial ideology of the open-source culture and its actual practice.

Cultures are adaptive machines. The open-source culture is a
response to an identifiable set of drives and pressures. As usual,
the culture’s adaptation to its circumstances manifests both as
conscious ideology and as implicit, unconscious or semi-conscious
knowledge. And, as is not uncommon, the unconscious adapta-
tions are partly at odds with the conscious ideology.

In this essay, I will dig around the roots of that contradiction, and
use it to discover those drives and pressures. I will deduce some
interesting things about the hacker culture and its customs. I will
conclude by suggesting ways in which the culture’s implicit knowl-
edge can be leveraged better.

The Varieties of Hacker Ideology

The ideology of the Internet open-source culture (what hackers
say they believe) is a fairly complex topic in itself. All members
agree that open source (that is, software that is freely redis-
tributable and can readily evolve and be modified to fit changing
needs) is a good thing and worthy of significant and collective
effort. This agreement effectively defines membership in the cul-
ture. However, the reasons individuals and various subcultures
give for this belief vary considerably.

Homesteading the Noosphere

67

22 December 2000 17:46

The Cathedral and the Bazaar

One degree of variation is zealotry; whether open source develop-
ment is regarded merely as a convenient means to an end (good
tools and fun toys and an interesting game to play) or as an end in
itself.

A person of great zeal might say, ‘‘Free software is my life! I exist
to create useful, beautiful programs and information resources,
and then give them away.’’ A person of moderate zeal might say,
‘‘Open source is a good thing, which I am willing to spend signifi-
cant time helping happen.’’ A person of little zeal might say, ‘‘Yes,
open source is okay sometimes. I play with it and respect people
who build it.’’

Another degree of variation is in hostility to commercial software
and/or the companies perceived to dominate the commercial soft-
ware market.

A very anticommercial person might say, ‘‘Commercial software is
theft and hoarding. I write free software to end this evil.’’ A mod-
erately anticommercial person might say, ‘‘Commercial software in
general is okay because programmers deserve to get paid, but
companies that coast on shoddy products and throw their weight
around are evil.’’ An un-anticommercial person might say, ‘‘Com-
mercial software is okay; I just use and/or write open-source soft-
ware because I like it better.’’ (Nowadays, given the growth of the
open-source part of the industry since the first public version of
this essay, one might also hear, ‘‘Commercial software is fine, as
long as I get the source or it does what I want it to do.’’)

All nine of the attitudes implied by the cross-product of the cate-
gories mentioned earlier are represented in the open-source cul-
ture. It is worthwhile to point out the distinctions because they
imply different agendas and different adaptive and cooperative
behaviors.

Historically, the most visible and best-organized part of the hacker
culture has been both very zealous and very anticommercial. The
Free Software Foundation founded by Richard M. Stallman

68

22 December 2000 17:46

(RMS) supported a great deal of open-source development from
the early 1980s forward, including tools like Emacs and GCC,
which are still basic to the Internet open-source world, and seem
likely to remain so for the forseeable future.

For many years the FSF was the single most important focus of
open-source hacking, producing a huge number of tools still criti-
cal to the culture. The FSF was also long the only sponsor of open
source with an institutional identity visible to outside observers of
the hacker culture. They effectively defined the term ‘free soft-
ware’, deliberately giving it a confrontational weight (which the
newer label ‘open source’ [http://www.opensource.org] just as
deliberately avoids).

Thus, perceptions of the hacker culture from both within and
without it tended to identify the culture with the FSF’s zealous
attitude and perceived anticommercial aims. RMS himself denies
he is anticommercial, but his program has been so read by most
people, including many of his most vocal partisans. The FSF’s vig-
orous and explicit drive to ‘‘Stamp Out Software Hoarding!’’
became the closest thing to a hacker ideology, and RMS the closest
thing to a leader of the hacker culture.

The FSF’s license terms, the ‘‘General Public License’’ (GPL),
expresses the FSF’s attitudes. It is very widely used in the open-
source world. North Carolina’s Metalab (http://metalab.unc.edu/
pub/Linux/welcome.html; formerly Sunsite) is the largest and most
popular software archive in the Linux world. In July 1997 about
half the Sunsite software packages with explicit license terms used
GPL.

But the FSF was never the only game in town. There was always a
quieter, less confrontational and more market-friendly strain in the
hacker culture. The pragmatists were loyal not so much to an ide-
ology as to a group of engineering traditions founded on early
open-source efforts that predated the FSF. These traditions
included, most importantly, the intertwined technical cultures of
Unix and the pre-commercial Internet.

Homesteading the Noosphere

69

22 December 2000 17:46

The Cathedral and the Bazaar

The typical pragmatist attitude is only moderately anticommercial,
and its major grievance against the corporate world is not ‘hoard-
ing’ per se. Rather it is that world’s perverse refusal to adopt supe-
rior approaches incorporating Unix and open standards and open-
source software. If the pragmatist hates anything, it is less likely to
be ‘hoarders’ in general than the current King Log of the software
establishment; formerly IBM, now Microsoft.

To pragmatists the GPL is important as a tool, rather than as an
end in itself. Its main value is not as a weapon against hoarding,
but as a tool for encouraging software sharing and the growth of
bazaar-mode development communities. The pragmatist values
having good tools and toys more than he dislikes commercialism,
and may use high-quality commercial software without ideological
discomfort. At the same time, his open-source experience has
taught him standards of technical quality that very little closed
software can meet.

For many years, the pragmatist point of view expressed itself
within the hacker culture mainly as a stubborn current of refusal
to completely buy into the GPL in particular or the FSF’s agenda
in general. Through the 1980s and early 1990s, this attitude
tended to be associated with fans of Berkeley Unix, users of the
BSD license, and the early efforts to build open-source Unixes
from the BSD source base. These efforts, however, failed to build
bazaar communities of significant size, and became seriously frag-
mented and ineffective.

Not until the Linux explosion of early 1993–1994 did pragmatism
find a real power base. Although Linus Torvalds never made a
point of opposing RMS, he set an example by looking benignly on
the growth of a commercial Linux industry, by publicly endorsing
the use of high-quality commercial software for specific tasks, and
by gently deriding the more purist and fanatical elements in the
culture.

A side effect of the rapid growth of Linux was the induction of a
large number of new hackers for which Linux was their primary

70

22 December 2000 17:46

loyalty and the FSF’s agenda primarily of historical interest.
Though the newer wave of Linux hackers might describe the sys-
tem as ‘‘the choice of a GNU generation’’, most tended to emulate
Torvalds more than Stallman.

Increasingly it was the anticommercial purists who found them-
selves in a minority. How much things had changed would not
become apparent until the Netscape announcement in February
1998 that it would distribute Navigator 5.0 in source. This excited
more interest in ‘free software’ within the corporate world. The
subsequent call to the hacker culture to exploit this unprecedented
opportunity and to re-label its product from ‘free software’ to
‘open source’ was met with a level of instant approval that sur-
prised everybody involved.

In a reinforcing development, the pragmatist part of the culture
was itself becoming polycentric by the mid-1990s. Other semi-
independent communities with their own self-consciousness and
charismatic leaders began to bud from the Unix/Internet root
stock. Of these, the most important after Linux was the Perl cul-
ture under Larry Wall. Smaller, but still significant, were the tradi-
tions building up around John Osterhout’s Tcl and Guido van
Rossum’s Python languages. All three of these communities
expressed their ideological independence by devising their own,
non-GPL licensing schemes.

Promiscuous Theory,
Puritan Practice

Through all these changes, nevertheless, there remained a broad
consensus theory of what ‘free software’ or ‘open source’ is. The
clearest expression of this common theory can be found in the var-
ious open-source licenses, all of which have crucial common ele-
ments.

In 1997 these common elements were distilled into the Debian
Free Software Guidelines, which became the Open Source Defini-
tion (http://www.opensource.org). Under the guidelines defined by

Homesteading the Noosphere

71

22 December 2000 17:46

The Cathedral and the Bazaar

the OSD, an open-source license must protect an unconditional
right of any party to modify (and redistribute modified versions
of) open-source software.

Thus, the implicit theory of the OSD (and OSD-conformant
licenses such as the GPL, the BSD license, and Perl’s Artistic
License) is that anyone can hack anything. Nothing prevents half a
dozen different people from taking any given open-source product
(such as, say the Free Software Foundations’s gcc C compiler),
duplicating the sources, running off with them in different evolu-
tionary directions, but all claiming to be the product.

This kind of divergence is called a fork. The most important char-
acteristic of a fork is that it spawns competing projects that can-
not later exchange code, splitting the potential developer
community. (There are phenomena that look superficially like
forking but are not, such as the proliferation of different Linux
distributions. In these pseudo-forking cases there may be separate
projects, but they use mostly common code and can benefit from
each other’s development efforts completely enough that they are
neither technically nor sociologically a waste, and are not per-
ceived as forks.)

The open-source licenses do nothing to restrain forking, let alone
pseudo-forking; in fact, one could argue that they implicitly
encourage both. In practice, however, pseudo-forking is common
but forking almost never happens. Splits in major projects have
been rare, and are always accompanied by re-labeling and a large
volume of public self-justification. It is clear, in such cases as the
GNU Emacs/XEmacs split, or the gcc/egcs split, or the various fis-
sionings of the BSD splinter groups, that the splitters felt they
were going against a fairly powerful community norm.1

In fact (and in contradiction to the anyone-can-hack-anything
consensus theory) the open-source culture has an elaborate but
largely unadmitted set of ownership customs.

72

22 December 2000 17:46

These customs regulate who can modify software, the circum-
stances under which it can be modified, and (especially) who has
the right to redistribute modified versions back to the community.

The taboos of a culture throw its norms into sharp relief. There-
fore, it will be useful later on if we summarize some important
ones here:

• There is strong social pressure against forking projects. It does
not happen except under plea of dire necessity, with much
public self-justification, and requires renaming.

• Distributing changes to a project without the cooperation of
the moderators is frowned upon, except in special cases like
essentially trivial porting fixes.

• Removing a person’s name from a project history, credits, or
maintainer list is absolutely not done without the person’s
explicit consent.

In the remainder of this essay, we shall examine these taboos and
ownership customs in detail. We shall inquire not only into how
they function but what they reveal about the underlying social
dynamics and incentive structures of the open-source community.

Ownership and Open Source

What does ‘ownership’ mean when property is infinitely reduplica-
ble, highly malleable, and the surrounding culture has neither
coercive power relationships nor material scarcity economics?

Actually, in the case of the open-source culture this is an easy
question to answer. The owner of a software project is the person
who has the exclusive right, recognized by the community at large,
to distribute modified versions.

(In discussing ‘ownership’ in this section I will use the singular, as
though all projects are owned by some one person. It should be
understood, however, that projects may be owned by groups. We
shall examine the internal dynamics of such groups later on.)

Homesteading the Noosphere

73

22 December 2000 17:46

The Cathedral and the Bazaar

According to the standard open-source licenses, all parties are
equals in the evolutionary game. But in practice there is a very
well-recognized distinction between ‘official’ patches, approved
and integrated into the evolving software by the publicly recog-
nized maintainers, and ‘rogue’ patches by third parties. Rogue
patches are unusual, and generally not trusted.2

That public redistribution is the fundamental issue is easy to
establish. Custom encourages people to patch software for per-
sonal use when necessary. Custom is indifferent to people who
redistribute modified versions within a closed user or development
group. It is only when modifications are posted to the open-source
community in general, to compete with the original, that owner-
ship becomes an issue.

There are, in general, three ways to acquire ownership of an open-
source project. One, the most obvious, is to found the project.
When a project has had only one maintainer since its inception
and the maintainer is still active, custom does not even permit a
question as to who owns the project.

The second way is to have ownership of the project handed to you
by the previous owner (this is sometimes known as “passing the
baton”). It is well understood in the community that project own-
ers have a duty to pass projects to competent successors when they
are no longer willing or able to invest needed time in development
or maintenance work.

It is significant that in the case of major projects, such transfers of
control are generally announced with some fanfare. While it is
unheard of for the open-source community at large to actually
interfere in the owner’s choice of succession, customary practice
clearly incorporates a premise that public legitimacy is important.

For minor projects, it is generally sufficient for a change history
included with the project distribution to note the change of owner-
ship. The clear presumption is that if the former owner has not in
fact voluntarily transferred control, he or she may reassert control

74

22 December 2000 17:46

with community backing by objecting publicly within a reasonable
period of time.

The third way to acquire ownership of a project is to observe that
it needs work and the owner has disappeared or lost interest. If
you want to do this, it is your responsibility to make the effort to
find the owner. If you don’t succeed, then you may announce in a
relevant place (such as a Usenet newsgroup dedicated to the appli-
cation area) that the project appears to be orphaned, and that you
are considering taking responsibility for it.

Custom demands that you allow some time to pass before follow-
ing up with an announcement that you have declared yourself the
new owner. In this interval, if someone else announces that they
have been actually working on the project, their claim trumps
yours. It is considered good form to give public notice of your
intentions more than once. You get more points for good form if
you announce in many relevant forums (related newsgroups, mail-
ing lists), and still more if you show patience in waiting for replies.
In general, the more visible effort you make to allow the previous
owner or other claimants to respond, the better your claim if no
response is forthcoming.

If you have gone through this process in sight of the project’s user
community, and there are no objections, then you may claim own-
ership of the orphaned project and so note in its history file. This,
however, is less secure than being passed the baton, and you can-
not expect to be considered fully legitimate until you have made
substantial improvements in the sight of the user community.

I have observed these customs in action for 20 years, going back
to the pre-FSF ancient history of open-source software. They have
several very interesting features. One of the most interesting is that
most hackers have followed them without being fully aware of
doing so. Indeed, this may be the first conscious and reasonably
complete summary ever to have been written down.

Homesteading the Noosphere

75

22 December 2000 17:46

The Cathedral and the Bazaar

Another is that, for unconscious customs, they have been followed
with remarkable (even astonishing) consistency. I have observed
the evolution of literally hundreds of open-source projects, and I
can still count the number of significant violations I have observed
or heard about on my fingers.

Yet a third interesting feature is that as these customs have
evolved over time, they have done so in a consistent direction.
That direction has been to encourage more public accountability,
more public notice, and more care about preserving the credits
and change histories of projects in ways that (among other things)
establish the legitimacy of the present owners.

These features suggest that the customs are not accidental, but are
products of some kind of implicit agenda or generative pattern in
the open-source culture that is utterly fundamental to the way it
operates.

An early respondent pointed out that contrasting the Internet
hacker culture with the cracker/pirate culture (the ‘‘warez d00dz’’
centered around game-cracking and pirate bulletin-board systems)
illuminates the generative patterns of both rather well. We’ll
return to the d00dz for contrast later in this essay.

Locke and Land Title

To understand this generative pattern, it helps to notice a histori-
cal analogy for these customs that is far outside the domain of
hackers’ usual concerns. As students of legal history and political
philosophy may recognize, the theory of property they imply is
virtually identical to the Anglo-American common-law theory of
land tenure!

In this theory, there are three ways to acquire ownership of land:

On a frontier, where land exists that has never had an owner, one
can acquire ownership by homesteading, mixing one’s labor with
the unowned land, fencing it, and defending one’s title.

76

22 December 2000 17:46

The usual means of transfer in settled areas is transfer of title—
that is, receiving the deed from the previous owner. In this theory,
the concept of ‘chain of title’ is important. The ideal proof of
ownership is a chain of deeds and transfers extending back to
when the land was originally homesteaded.

Finally, the common-law theory recognizes that land title may be
lost or abandoned (for example, if the owner dies without heirs,
or the records needed to establish chain of title to vacant land are
gone). A piece of land that has become derelict in this way may be
claimed by adverse possession—one moves in, improves it, and
defends title as if homesteading.

This theory, like hacker customs, evolved organically in a context
where central authority was weak or nonexistent. It developed
over a period of a thousand years from Norse and Germanic tribal
law. Because it was systematized and rationalized in the early
modern era by the English political philosopher John Locke, it is
sometimes referred to as the Lockean theory of property.

Logically similar theories have tended to evolve wherever property
has high economic or survival value and no single authority is
powerful enough to force central allocation of scarce goods. This
is true even in the hunter-gatherer cultures that are sometimes
romantically thought to have no concept of ‘property’. For exam-
ple, in the traditions of the !Kung San bushmen of the Kgalagadi
(formerly Kalahari) Desert, there is no ownership of hunting
grounds. But there is ownership of waterholes and springs under a
theory recognizably akin to Locke’s.

The !Kung San example is instructive, because it shows that Lock-
ean property customs arise only where the expected return from
the resource exceeds the expected cost of defending it. Hunting
grounds are not property because the return from hunting is
highly unpredictable and variable, and (although highly prized)
not a necessity for day-to-day survival. Waterholes, on the other
hand, are vital to survival and small enough to defend.

Homesteading the Noosphere

77

22 December 2000 17:46

The Cathedral and the Bazaar

The ‘noosphere’ of this essay’s title is the territory of ideas, the
space of all possible thoughts.3 What we see implied in hacker
ownership customs is a Lockean theory of property rights in one
subset of the noosphere, the space of all programs. Hence ‘home-
steading the noosphere’, which is what every founder of a new
open-source project does.

Faré Rideau (fare@tunes.org) correctly points out that hackers do
not exactly operate in the territory of pure ideas. He asserts that
what hackers own is programming projects—intensional focus
points of material labor (development, service, etc.), to which are
associated things like reputation, trustworthiness, etc. He there-
fore asserts that the space spanned by hacker projects is not the
noosphere but a sort of dual of it, the space of noosphere-explor-
ing program projects. (With an apologetic nod to the astrophysi-
cists out there, it would be etymologically correct to call this dual
space the ‘ergosphere’ or ‘sphere of work’.)

In practice, the distinction between noosphere and ergosphere is
not important for the purposes of our present argument. It is dubi-
ous whether the noosphere in the pure sense on which Faré insists
can be said to exist in any meaningful way; one would almost
have to be a Platonic philosopher to believe in it. And the distinc-
tion between noosphere and ergosphere is only of practical impor-
tance if one wishes to assert that ideas (the elements of the
noosphere) cannot be owned, but their instantiations as projects
can. This question leads to issues in the theory of intellectual
property that are beyond the scope of this essay4).

To avoid confusion, however, it is important to note that neither
the noosphere nor the ergosphere is the same as the totality of vir-
tual locations in electronic media that is sometimes (to the disgust
of most hackers) called ‘cyberspace’. Property there is regulated by
completely different rules that are closer to those of the material
substratum — essentially, he who owns the media and machines on
which a part of cyberspace is hosted owns that piece of cyberspace
as a result.

78

22 December 2000 17:46

The Lockean logic of custom suggests strongly that open-source
hackers observe the customs they do in order to defend some kind
of expected return from their effort. The return must be more sig-
nificant than the effort of homesteading projects, the cost of main-
taining version histories that document ‘chain of title’, and the
time cost of making public notifications and waiting before taking
adverse possession of an orphaned project.

Furthermore, the ‘yield’ from open source must be something
more than simply the use of the software, something else that
would be compromised or diluted by forking. If use were the only
issue, there would be no taboo against forking, and open-source
ownership would not resemble land tenure at all. In fact, this
alternate world (where use is the only yield, and forking is
unproblematic) is the one implied by existing open-source licenses.

We can eliminate some candidate kinds of yield right away.
Because you can’t coerce effectively over a network connection,
seeking power is right out. Likewise, the open-source culture
doesn’t have anything much resembling money or an internal
scarcity economy, so hackers cannot be pursuing anything very
closely analogous to material wealth (e.g., the accumulation of
scarcity tokens).

There is one way that open-source activity can help people
become wealthier, however — a way that provides a valuable clue
to what actually motivates it. Occasionally, the reputation one
gains in the hacker culture can spill over into the real world in
economically significant ways. It can get you a better job offer, or
a consulting contract, or a book deal.

This kind of side effect, however, is at best rare and marginal for
most hackers; far too much so to make it convincing as a sole
explanation, even if we ignore the repeated protestations by hack-
ers that they’re doing what they do not for money but out of ide-
alism or love.

Homesteading the Noosphere

79

22 December 2000 17:46

The Cathedral and the Bazaar

However, the way such economic side effects are mediated is
worth examination. Next we’ll see that an understanding of the
dynamics of reputation within the open-source culture itself has
considerable explanatory power.

The Hacker Milieu as Gift Culture

To understand the role of reputation in the open-source culture, it
is helpful to move from history further into anthropology and eco-
nomics, and examine the difference between exchange cultures
and gift cultures.

Human beings have an innate drive to compete for social status;
it’s wired in by our evolutionary history. For the 90% of hominid
history that ran before the invention of agriculture, our ancestors
lived in small nomadic hunter-gatherer bands. High-status individ-
uals (those most effective at informing coalitions and persuading
others to cooperate with them) got the healthiest mates and access
to the best food. This drive for status expresses itself in different
ways, depending largely on the degree of scarcity of survival
goods.

Most ways humans have of organizing are adaptations to scarcity
and want. Each way carries with it different ways of gaining social
status.

The simplest way is the command hierarchy. In command hierar-
chies, scarce goods are allocated by one central authority and
backed up by force. Command hierarchies scale very poorly;5 they
become increasingly brutal and inefficient as they get larger. For
this reason, command hierarchies above the size of an extended
family are almost always parasites on a larger economy of a differ-
ent type. In command hierarchies, social status is primarily deter-
mined by access to coercive power.

Our society is predominantly an exchange economy. This is a
sophisticated adaptation to scarcity that, unlike the command
model, scales quite well. Allocation of scarce goods is done in a

80

22 December 2000 17:46

decentralized way through trade and voluntary cooperation (and
in fact, the dominating effect of competitive desire is to produce
cooperative behavior). In an exchange economy, social status is
primarily determined by having control of things (not necessarily
material things) to use or trade.

Most people have implicit mental models of both and understand
how they interact with each other. Government, the military, and
organized crime (for example) are command hierarchies parasitic
on the broader exchange economy we call ‘the free market’.
There’s a third model, however, that is radically different from
either and not generally recognized except by anthropologists; the
gift culture.

Gift cultures are adaptations not to scarcity but to abundance.
They arise in populations that do not have significant material-
scarcity problems with survival goods. We can observe gift cul-
tures in action among aboriginal cultures living in ecozones with
mild climates and abundant food. We can also observe them in
certain strata of our own society, especially in show business and
among the very wealthy.

Abundance makes command relationships difficult to sustain and
exchange relationships an almost pointless game. In gift cultures,
social status is determined not by what you control but by what
you give away.

Thus the Kwakiutl chieftain’s potlach party. Thus the multi-
millionaire’s elaborate and usually public acts of philanthropy.
And thus the hacker’s long hours of effort to produce high-quality
open-source code.

For examined in this way, it is quite clear that the society of open-
source hackers is in fact a gift culture. Within it, there is no seri-
ous shortage of the ‘survival necessities’—disk space, network
bandwidth, computing power. Software is freely shared. This
abundance creates a situation in which the only available measure
of competitive success is reputation among one’s peers.

Homesteading the Noosphere

81

22 December 2000 17:46

The Cathedral and the Bazaar

This observation is not in itself entirely sufficient to explain the
observed features of hacker culture, however. The crackers and
warez d00dz have a gift culture that thrives in the same (elec-
tronic) media as that of the hackers, but their behavior is very dif-
ferent. The group mentality in their culture is much stronger and
more exclusive than among hackers. They hoard secrets rather
than sharing them; one is much more likely to find cracker groups
distributing sourceless executables that crack software than tips
that give away how they did it. (For an inside perspective on this
behavior, see endnote 5).

What this shows, in case it wasn’t obvious, is that there is more
than one way to run a gift culture. History and values matter. I
have summarized the history of the hacker culture in A Brief His-
tory of Hackerdom; the ways in which it shaped present behavior
are not mysterious. Hackers have defined their culture by a set of
choices about the form that their competition will take. It is that
form that we will examine in the remainder of this essay.

The Joy of Hacking

In making this ‘reputation game’ analysis, by the way, I do not
mean to devalue or ignore the pure artistic satisfaction of design-
ing beautiful software and making it work. Hackers all experience
this kind of satisfaction and thrive on it. People for whom it is not
a significant motivation never become hackers in the first place,
just as people who don’t love music never become composers.

So perhaps we should consider another model of hacker behavior
in which the pure joy of craftsmanship is the primary motivation.
This ‘craftsmanship’ model would have to explain hacker custom
as a way of maximizing both the opportunities for craftsmanship
and the quality of the results. Does this conflict with or suggest
different results than the reputation game model?

Not really. In examining the craftsmanship model, we come back
to the same problems that constrain hackerdom to operate like a
gift culture. How can one maximize quality if there is no metric

82

22 December 2000 17:46

for quality? If scarcity economics doesn’t operate, what metrics
are available besides peer evaluation? It appears that any crafts-
manship culture ultimately must structure itself through a reputa-
tion game—and, in fact, we can observe exactly this dynamic in
many historical craftsmanship cultures from the medieval guilds
onwards.

In one important respect, the craftsmanship model is weaker than
the gift culture model; by itself, it doesn’t help explain the contra-
diction we began this essay with.

Finally, the craftsmanship motivation itself may not be psychologi-
cally as far removed from the reputation game as we might like to
assume. Imagine your beautiful program locked up in a drawer
and never used again. Now imagine it being used effectively and
with pleasure by many people. Which dream gives you satis-
faction?

Nevertheless, we’ll keep an eye on the craftsmanship model. It is
intuitively appealing to many hackers, and explains some aspects
of individual behavior well enough.6

After I published the first version of this essay on the Internet, an
anonymous respondent commented: ‘‘You may not work to get
reputation, but the reputation is a real payment with consequences
if you do the job well.’’ This is a subtle and important point. The
reputation incentives continue to operate whether or not a crafts-
man is aware of them; thus, ultimately, whether or not a hacker
understands his own behavior as part of the reputation game, his
behavior will be shaped by that game.

Other respondents related peer-esteem rewards and the joy of
hacking to the levels above subsistence needs in Abraham
Maslow’s well-known ‘hierarchy of values’ model of human
motivation.7 On this view, the joy of hacking fulfills a self-actual-
ization or transcendence need, which will not be consistently
expressed until lower-level needs (including those for physical
security and for ‘belongingness’ or peer esteem) have been at least

Homesteading the Noosphere

83

22 December 2000 17:46

The Cathedral and the Bazaar

minimally satisfied. Thus, the reputation game may be critical in
providing a social context within which the joy of hacking can in
fact become the individual’s primary motive.

The Many Faces of Reputation

There are reasons general to every gift culture why peer repute
(prestige) is worth playing for:

First and most obviously, good reputation among one’s peers is a
primary reward. We’re wired to experience it that way for evolu-
tionary reasons touched on earlier. (Many people learn to redirect
their drive for prestige into various sublimations that have no
obvious connection to a visible peer group, such as ‘honor’, ‘ethi-
cal integrity’, ‘piety’, etc.; this does not change the underlying
mechanism.)

Second, prestige is a good way (and in a pure gift economy, the
only way) to attract attention and cooperation from others. If one
is well known for generosity, intelligence, fair dealing, leadership
ability, or other good qualities, it becomes much easier to per-
suade other people that they will gain by association with you.

Third, if your gift economy is in contact with or intertwined with
an exchange economy or a command hierarchy, your reputation
may spill over and earn you higher status there.

Beyond these general reasons, the peculiar conditions of the
hacker culture make prestige even more valuable than it would be
in a ‘real world’ gift culture.

The main ‘peculiar condition’ is that the artifacts one gives away
(or, interpreted another way, are the visible sign of one’s gift of
energy and time) are very complex. Their value is nowhere near as
obvious as that of material gifts or exchange-economy money. It is
much harder to objectively distinguish a fine gift from a poor one.
Accordingly, the success of a giver’s bid for status is delicately
dependent on the critical judgement of peers.

84

22 December 2000 17:46

Another peculiarity is the relative purity of the open-source cul-
ture. Most gift cultures are compromised—either by exchange-
economy relationships such as trade in luxury goods, or by
command-economy relationships such as family or clan groupings.
No significant analogues of these exist in the open-source culture;
thus, ways of gaining status other than by peer repute are virtually
absent.

Ownership Rights and Reputation
Incentives

We are now in a position to pull together the previous analyses
into a coherent account of hacker ownership customs. We under-
stand the yield from homesteading the noosphere now; it is peer
repute in the gift culture of hackers, with all the secondary gains
and side effects that implies.

From this understanding, we can analyze the Lockean property
customs of hackerdom as a means of maximizing reputation
incentives—of ensuring that peer credit goes where it is due and
does not go where it is not due.

The three taboos we have observed make perfect sense under this
analysis. One’s reputation can suffer unfairly if someone else mis-
appropriates or mangles one’s work; these taboos (and related cus-
toms) attempt to prevent this from happening. (Or, to put it more
pragmatically, hackers generally refrain from forking or rogue-
patching others’ projects in order to be able to deny legitimacy to
the same behavior practiced against themselves.)

• Forking projects is bad because it exposes pre-fork contribu-
tors to a reputation risk they can only control by being active
in both child projects simultaneously after the fork. (This
would generally be too confusing or difficult to be practical.)

Homesteading the Noosphere

85

22 December 2000 17:46

The Cathedral and the Bazaar

• Distributing rogue patches (or, much worse, rogue binaries)
exposes the owners to an unfair reputation risk. Even if the
official code is perfect, the owners will catch flak from bugs in
the patches (but see endnote 4.).

• Surreptitiously filing someone’s name off a project is, in cul-
tural context, one of the ultimate crimes. Doing this steals the
victim’s gift to be presented as the thief’s own.

Of course, forking a project or distributing rogue patches for it
also directly attacks the reputation of the original developer’s
group. If I fork or rogue-patch your project, I am saying, “You
made a wrong decision by failing to take the project where I am
taking it”; and anyone who uses my forked variation is endorsing
this challenge. But this in itself would be a fair challenge, albeit
extreme; it’s the sharpest end of peer review. It’s therefore not suf-
ficient in itself to account for the taboos, though it doubtless con-
tributes force to them.

All three taboo behaviors inflict global harm on the open-source
community as well as local harm on the victim(s). Implicitly they
damage the entire community by decreasing each potential con-
tributor’s perceived likelihood that gift/productive behavior will be
rewarded.

It’s important to note that there are alternate candidate explana-
tions for two of these three taboos.

First, hackers often explain their antipathy to forking projects by
bemoaning the wasteful duplication of work it would imply as the
child products evolve on more-or-less parallel courses into the
future. They may also observe that forking tends to split the co-
developer community, leaving both child projects with fewer
brains to use than the parent.

A respondent has pointed out that it is unusual for more than one
offspring of a fork to survive with significant ‘market share’ into
the long term. This strengthens the incentives for all parties to
cooperate and avoid forking, because it’s hard to know in advance

86

22 December 2000 17:46

who will be on the losing side and see a lot of their work either
disappear entirely or languish in obscurity.

It has also been pointed out that the simple fact that forks are
likely to produce contention and dispute is enough to motivate
social pressure against them. Contention and dispute disrupt the
teamwork that is necessary for each individual contributor to
reach his or her goals.

Dislike of rogue patches is often explained by the objection that
they can create compatibility problems between the daughter ver-
sions, complicate bug-tracking enormously, and inflict work on
maintainers who have quite enough to do catching their own mis-
takes.

There is considerable truth to these explanations, and they cer-
tainly do their bit to reinforce the Lockean logic of ownership. But
while intellectually attractive, they fail to explain why so much
emotion and territoriality gets displayed on the infrequent occa-
sions that the taboos get bent or broken—not just by the injured
parties, but by bystanders and observers who often react quite
harshly. Cold-blooded concerns about duplication of work and
maintainance hassles simply do not sufficiently explain the
observed behavior.

Then, too, there is the third taboo. It’s hard to see how anything
but the reputation-game analysis can explain this. The fact that
this taboo is seldom analyzed much more deeply than ‘‘It wouldn’t
be fair’’ is revealing in its own way, as we shall see in the next
section.

The Problem of Ego

At the beginning of this essay I mentioned that the unconscious
adaptive knowledge of a culture is often at odds with its conscious
ideology. One major example of this is the fact that Lockean own-
ership customs have been widely followed despite the fact that
they violate the stated intent of the standard licenses.

Homesteading the Noosphere

87

22 December 2000 17:46

The Cathedral and the Bazaar

I have observed another interesting example of this phenomenon
when discussing the reputation-game analysis with hackers. This is
that many hackers resisted the analysis and showed a strong reluc-
tance to admit that their behavior was motivated by a desire for
peer repute or, as I incautiously labeled it at the time, ‘ego satis-
faction’.

This illustrates an interesting point about the hacker culture. It
consciously distrusts and despises egotism and ego-based motiva-
tions; self-promotion tends to be mercilessly criticized, even when
the community might appear to have something to gain from it.
So much so, in fact, that the culture’s ‘big men’ and tribal elders
are required to talk softly and humorously deprecate themselves at
every turn in order to maintain their status. How this attitude
meshes with an incentive structure that apparently runs almost
entirely on ego cries out for explanation.

A large part of it, certainly, stems from the generally negative
Europo-American attitude towards ‘ego’. The cultural matrix of
most hackers teaches them that desiring ego satisfaction is a bad
(or at least immature) motivation; that ego is at best an eccentric-
ity tolerable only in prima donnas and often an actual sign of
mental pathology. Only sublimated and disguised forms like ‘peer
repute’, ‘self-esteem’, ‘professionalism’, or ‘pride of accomplish-
ment’ are generally acceptable.

I could write an entire other essay on the unhealthy roots of this
part of our cultural inheritance, and the astonishing amount of
self-deceptive harm we do by believing (against all the evidence of
psychology and behavior) that we ever have truly ‘selfless’
motives. Perhaps I would, if Friedrich Wilhelm Nietzsche and Ayn
Rand had not already done an entirely competent job (whatever
their other failings) of deconstructing ‘altruism’ into unacknowl-
edged kinds of self-interest.

But I am not doing moral philosophy or psychology here, so I will
simply observe one minor kind of harm done by the belief that ego
is evil, which is this: it has made it emotionally difficult for many

88

22 December 2000 17:46

hackers to consciously understand the social dynamics of their
own culture!

But we are not quite done with this line of investigation. The sur-
rounding culture’s taboo against visibly ego-driven behavior is so
much intensified in the hacker (sub)culture that one must suspect
it of having some sort of special adaptive function for hackers.
Certainly the taboo is weaker (or nonexistent) among many other
gift cultures, such as the peer cultures of theater people or the very
wealthy.

The Value of Humility

Having established that prestige is central to the hacker culture’s
reward mechanisms, we now need to understand why it has
seemed so important that this fact remain semi-covert and largely
unadmitted.

The contrast with the pirate culture is instructive. In that culture,
status-seeking behavior is overt and even blatant. These crackers
seek acclaim for releasing ‘‘zero-day warez’’ (cracked software
redistributed on the day of the original uncracked version’s
release) but are closemouthed about how they do it. These magi-
cians don’t like to give away their tricks. And, as a result, the
knowledge base of the cracker culture as a whole increases only
slowly.

In the hacker community, by contrast, one’s work is one’s state-
ment. There’s a very strict meritocracy (the best craftsmanship
wins) and there’s a strong ethos that quality should (indeed must)
be left to speak for itself. The best brag is code that ‘‘just works’’,
and that any competent programmer can see is good stuff. Thus,
the hacker culture’s knowledge base increases rapidly.

The taboo against ego-driven posturing therefore increases pro-
ductivity. But that’s a second-order effect; what is being directly
protected here is the quality of the information in the community’s
peer-evaluation system. That is, boasting or self-importance is

Homesteading the Noosphere

89

22 December 2000 17:46

The Cathedral and the Bazaar

suppressed because it behaves like noise tending to corrupt the
vital signals from experiments in creative and cooperative
behavior.

For very similar reasons, attacking the author rather than the code
is not done. There is an interesting subtlety here that reinforces the
point; hackers feel very free to flame each other over ideological
and personal differences, but it is unheard of for any hacker to
publicly attack another’s competence at technical work (even pri-
vate criticism is unusual and tends to be muted in tone). Bug-hunt-
ing and criticism are always project-labeled, not person-labeled.

Furthermore, past bugs are not automatically held against a devel-
oper; the fact that a bug has been fixed is generally considered
more important than the fact that one used to be there. As one
respondent observed, one can gain status by fixing ‘Emacs bugs’,
but not by fixing ‘Richard Stallman’s bugs’ — and it would be con-
sidered extremely bad form to criticize Stallman for old Emacs
bugs that have since been fixed.

This makes an interesting contrast with many parts of academia,
in which trashing putatively defective work by others is an impor-
tant mode of gaining reputation. In the hacker culture, such
behavior is rather heavily tabooed—so heavily, in fact, that the
absence of such behavior did not present itself to me as a datum
until that one respondent with an unusual perspective pointed it
out nearly a full year after this essay was first published!

The taboo against attacks on competence (not shared with
academia) is even more revealing than the (shared) taboo on pos-
turing, because we can relate it to a difference between academia
and hackerdom in their communications and support structures.

The hacker culture’s medium of gifting is intangible, its communi-
cations channels are poor at expressing emotional nuance, and
face-to-face contact among its members is the exception rather
than the rule. This gives it a lower tolerance of noise than most
other gift cultures, and goes a long way to explain both the taboo

90

22 December 2000 17:46

against posturing and the taboo against attacks on competence.
Any significant incidence of flames over hackers’ competence
would intolerably disrupt the culture’s reputation scoreboard.

The same vulnerability to noise explains the model of public
humility required of the hacker community’s tribal elders. They
must be seen to be free of boast and posturing so the taboo
against dangerous noise will hold.8

Talking softly is also functional if one aspires to be a maintainer
of a successful project; one must convince the community that one
has good judgement, because most of the maintainer’s job is going
to be judging other people’s code. Who would be inclined to con-
tribute work to someone who clearly can’t judge the quality of
their own code, or whose behavior suggests they will attempt to
unfairly hog the reputation return from the project? Potential con-
tributors want project leaders with enough humility and class to
be able to to say, when objectively appropriate, ‘‘Yes, that does
work better than my version, I’ll use it’’—and to give credit where
credit is due.

Yet another reason for humble behavior is that in the open source
world, you seldom want to give the impression that a project is
‘done’. This might lead a potential contributor not to feel needed.
The way to maximize your leverage is to be humble about the
state of the program. If one does one’s bragging through the code,
and then says, ‘‘Well shucks, it doesn’t do x, y, and z, so it can’t be
that good’’, patches for x, y, and z will often swiftly follow.

Finally, I have personally observed that the self-deprecating
behavior of some leading hackers reflects a real (and not unjusti-
fied) fear of becoming the object of a personality cult. Linus Tor-
valds and Larry Wall both provide clear and numerous examples
of such avoidance behavior. Once, on a dinner expedition with
Larry Wall, I joked, ‘‘You’re the alpha hacker here—you get to
pick the restaurant.’’ He flinched noticeably. And rightly so; failing
to distinguish their shared values from the personalities of their
leaders has ruined a good many voluntary communities, a pattern

Homesteading the Noosphere

91

22 December 2000 17:46

The Cathedral and the Bazaar

of which Larry and Linus cannot fail to be fully aware. On the
other hand, most hackers would love to have Larry’s problem, if
they could but bring themselves to admit it.

Global Implications of the
Reputation-Game Model

The reputation-game analysis has some more implications that
may not be immediately obvious. Many of these derive from the
fact that one gains more prestige from founding a successful pro-
ject than from cooperating in an existing one. One also gains more
from projects that are strikingly innovative, as opposed to being
‘me, too’ incremental improvements on software that already
exists. On the other hand, software that nobody but the author
understands or has a need for is a non-starter in the reputation
game, and it’s often easier to attract good notice by contributing
to an existing project than it is to get people to notice a new one.
Finally, it’s much harder to compete with an already successful
project than it is to fill an empty niche.

Thus, there’s an optimum distance from one’s neighbors (the most
similar competing projects). Too close and one’s product will be a
‘‘me, too!’’ of limited value, a poor gift (one would be better off
contributing to an existing project). Too far away, and nobody
will be able to use, understand, or perceive the relevance of one’s
effort (again, a poor gift). This creates a pattern of homesteading
in the noosphere that rather resembles that of settlers spreading
into a physical frontier—not random, but like a diffusion-limited
fractal. Projects tend to get started to fill functional gaps near the
frontier (see endnote 9 for further discussion of the lure of
novelty).

Some very successful projects become category killers; nobody
wants to homestead anywhere near them because competing
against the established base for the attention of hackers would be
too hard. People who might otherwise found their own distinct
efforts end up, instead, adding extensions for these big, successful

92

22 December 2000 17:46

projects. The classic category killer example is GNU Emacs; its
variants fill the ecological niche for a fully-programmable editor
so completely that no competitor has gotten much beyond the
one-man project stage since the early 1980s. Instead, people write
Emacs modes.

Globally, these two tendencies (gap-filling and category-killers)
have driven a broadly predictable trend in project starts over time.
In the 1970s most of the open source that existed was toys and
demos. In the 1980s the push was in development and Internet
tools. In the 1990s the action shifted to operating systems. In each
case, a new and more difficult level of problems was attacked
when the possibilities of the previous one had been nearly
exhausted.

This trend has interesting implications for the near future. In early
1998, Linux looked very much like a category killer for the ‘open-
source operating systems’ niche—people who might otherwise
write competing operating systems are now writing Linux device
drivers and extensions instead. And most of the lower-level tools
the culture ever imagined having as open-source already exist.
What’s left?

Applications. As the third millenium begins, it seems safe to pre-
dict that open-source development effort will increasingly shift
towards the last virgin territory—programs for non-techies. A
clear early indicator was the development of GIMP
(http://www.gimp.org), the Photoshop-like image workshop that is
open source’s first major application with the kind of end-
user–friendly GUI interface considered de rigueur in commercial
applications for the last decade. Another is the amount of buzz
surrounding application-toolkit projects such as KDE (see
http://www.kde.org) and GNOME (see http://www.gnome.org).

A respondent to this essay has pointed out that the homesteading
analogy also explains why hackers react with such visceral anger
to Microsoft’s ‘‘embrace and extend’’ policy of complexifying and
then closing up Internet protocols. The hacker culture can coexist

Homesteading the Noosphere

93

22 December 2000 17:46

The Cathedral and the Bazaar

with most closed software; the existence of Adobe Photoshop, for
example, does not make the territory near GIMP (its open-source
equivalent) significantly less attractive. But when Microsoft suc-
ceeds at de-commoditizing a protocol so that only Microsoft’s
own programmers can write software for it, they do not merely
harm customers by extending their monopoly; they also reduce the
amount and quality of noosphere available for hackers to home-
stead and cultivate9. No wonder hackers often refer to Microsoft’s
strategy as ‘‘protocol pollution’’; they are reacting exactly like
farmers watching someone poison the river they water their crops
with!

Finally, the reputation-game analysis explains the oft-cited dictum
that you do not become a hacker by calling yourself a hacker—
you become a hacker when other hackers call you a hacker.10 A
hacker, considered in this light, is somebody who has shown (by
contributing gifts) that he or she both has technical ability and
understands how the reputation game works. This judgement is
mostly one of awareness and acculturation, and can be delivered
only by those already well inside the culture.

How Fine a Gift?

There are consistent patterns in the way the hacker culture values
contributions and returns peer esteem for them. It’s not hard to
observe the following rules:

1. If it doesn’t work as well as I have been led to
expect it will, it’s no good—no matter how
clever and original it is.

Note the phrase “led to expect”. This rule is not a demand for
perfection; beta and experimental software is allowed to have
bugs. It’s a demand that the user be able to accurately estimate
risks from the stage of the project and the developers’ representa-
tions about it.

This rule underlies the fact that open-source software tends to stay
in beta for a long time, and not get even a 1.0 version number

94

22 December 2000 17:46

until the developers are very sure it will not hand out a lot of
nasty surprises. In the closed-source world, Version 1.0 means:
‘‘Don’t touch this if you’re prudent.’’ In the open-source world, it
reads something more like: ‘‘The developers are willing to bet their
reputations on this.’’

2. Work that extends the noosphere is better than
work that duplicates an existing piece of func-
tional territory.

The naive way to put this would have been: original work is better
than mere duplication of the functions of existing software. But
it’s not actually quite that simple. Duplicating the functions of
existing closed software counts as highly as original work if by
doing so you break open a closed protocol or format and make
that territory newly available.

Thus, for example, one of the highest-prestige projects in the pre-
sent open-source world is Samba—the code that allows Unix
machines to act as clients or servers for Microsoft’s proprietary
SMB file-sharing protocol. There is very little creative work to be
done here; it’s mostly an issue of getting the reverse-engineered
details right. Nevertheless, the members of the Samba group are
perceived as heroes because they neutralize a Microsoft effort to
lock in whole user populations and cordon off a big section of the
noosphere.

3. Work that makes it into a major distribution is
better than work that doesn’t. Work carried in
all major distributions is most prestigious.

The major distributions include not just the big Linux distribu-
tions like Red Hat, Debian, Caldera, and SuSE, but other collec-
tions that are understood to have reputations of their own to
maintain and thus implicitly certify quality—like BSD distribu-
tions or the Free Software Foundation source collection.

4. Utilization is the sincerest form of flattery—
and category killers are better than also-rans.

Homesteading the Noosphere

95

22 December 2000 17:46

The Cathedral and the Bazaar

Trusting the judgment of others is basic to the peer-review process.
It’s necessary because nobody has time to review all possible alter-
natives. So work used by lots of people is considered better than
work used by a few.

To have done work so good that nobody cares to use the alterna-
tives anymore is therefore to have earned huge prestige. The most
possible peer esteem comes from having done widely popular, cat-
egory-killing original work that is carried by all major distribu-
tions. People who have pulled this off more than once are half-
seriously referred to as demigods.

5. Continued devotion to hard, boring work (like
debugging, or writing documentation) is more
praiseworthy than cherrypicking the fun and
easy hacks.

This norm is how the community rewards necessary tasks that
hackers would not naturally incline towards. It is to some extent
contradicted by:

6. Nontrivial extensions of function are better
than low-level patches and debugging.

The way this seems to work is that on a one-shot basis, adding a
feature is likely to get more reward than fixing a bug—unless the
bug is exceptionally nasty or obscure, such that nailing it is itself a
demonstration of unusual skill and cleverness. But when these
behaviors are extended over time, a person with a long history of
paying attention to and nailing even ordinary bugs may well out-
rank someone who has spent a similar amount of effort adding
easy features.

A respondent has pointed out that these rules interact in interest-
ing ways and do not necessarily reward highest possible utility all
the time. Ask a hacker whether he’s likely to become better known
for a brand new tool of his own or for extensions to someone
else’s and the answer ‘‘new tool’’ will not be in doubt. But ask
about (a) a brand new tool that is only used a few times a day
invisibly by the OS but that rapidly becomes a category killer,

96

22 December 2000 17:46

versus (b) several extensions to an existing tool that are neither
especially novel nor category-killers, but are daily used and daily
visible to a huge number of users and you are likely to get some
hesitation before the hacker settles on (a). These alternatives are
about evenly stacked.

Said respondent gave this question point for me by adding: ‘‘Case
(a) is fetchmail; case (b) is your many Emacs extensions, like vc.el
and gud.el.’’ And indeed he is correct; I am more likely to be
tagged ‘‘the author of fetchmail’’ than ‘‘the author of a boatload of
Emacs modes’’, even though the latter probably have had higher
total utility over time.

What may be going on here is simply that work with a novel
‘brand identity’ gets more notice than work aggregated to an
existing ‘brand’. Elucidation of these rules, and what they tell us
about the hacker culture’s scoreboarding system, would make a
good topic for further investigation.

Noospheric Property and the
Ethology of Territory

To understand the causes and consequences of Lockean property
customs, it will help us to look at them from yet another angle;
that of animal ethology, specifically the ethology of territory.

Property is an abstraction of animal territoriality, which evolved
as a way of reducing intraspecies violence. By marking his bounds,
and respecting the bounds of others, a wolf diminishes his chances
of being in a fight that could weaken or kill him and make him
less reproductively successful. Similarly, the function of property
in human societies is to prevent inter-human conflict by setting
bounds that clearly separate peaceful behavior from aggression.

It is fashionable in some circles to describe human property as an
arbitrary social convention, but this is dead wrong. Anybody who
has ever owned a dog who barked when strangers came near its
owner’s property has experienced the essential continuity between

Homesteading the Noosphere

97

22 December 2000 17:46

The Cathedral and the Bazaar

animal territoriality and human property. Our domesticated
cousins of the wolf know, instinctively, that property is no mere
social convention or game, but a critically important evolved
mechanism for the avoidance of violence. (This makes them
smarter than a good many human political theorists.)

Claiming property (like marking territory) is a performative act, a
way of declaring what boundaries will be defended. Community
support of property claims is a way to minimize friction and maxi-
mize cooperative behavior. These things remain true even when
the ‘property claim’ is much more abstract than a fence or a dog’s
bark, even when it’s just the statement of the project maintainer’s
name in a README file. It’s still an abstraction of territoriality,
and (like other forms of property) based in territorial instincts
evolved to assist conflict resolution.

This ethological analysis may at first seem very abstract and diffi-
cult to relate to actual hacker behavior. But it has some important
consequences. One is in explaining the popularity of World Wide
Web sites, and especially why open-source projects with websites
seem so much more ‘real’ and substantial than those without
them.

Considered objectively, this seems hard to explain. Compared to
the effort involved in originating and maintaining even a small
program, a web page is easy, so it’s hard to consider a web page
evidence of substance or unusual effort.

Nor are the functional characteristics of the Web itself sufficient
explanation. The communication functions of a web page can be
as well or better served by a combination of an FTP site, a mailing
list, and Usenet postings. In fact it’s quite unusual for a project’s
routine communications to be done over the Web rather than via a
mailing list or newsgroup. Why, then, the popularity of websites
as project homes?

The metaphor implicit in the term ‘home page’ provides an impor-
tant clue. While founding an open-source project is a territorial

98

22 December 2000 17:46

claim in the noosphere (and customarily recognized as such) it is
not a terribly compelling one on the psychological level. Software,
after all, has no natural location and is instantly reduplicable. It’s
assimilable to our instinctive notions of ‘territory’ and ‘property’,
but only after some effort.

A project home page concretizes an abstract homesteading in the
space of possible programs by expressing it as ‘home’ territory in
the more spatially-organized realm of the World Wide Web.
Descending from the noosphere to ‘cyberspace’ doesn’t get us all
the way to the real world of fences and barking dogs yet, but it
does hook the abstract property claim more securely to our
instinctive wiring about territory. And this is why projects with
web pages seem more ‘real’.

This point is much strengthened by hyperlinks and the existence of
good search engines. A project with a web page is much more
likely to be noticed by somebody exploring its neighborhood in
the noosphere; others will link to it, searches will find it. A web
page is therefore a better advertisement, a more effective perfor-
mative act, a stronger claim on territory.

This ethological analysis also encourages us to look more closely
at mechanisms for handling conflict in the open-source culture. It
leads us to expect that, in addition to maximizing reputation
incentives, ownership customs should also have a role in prevent-
ing and resolving conflicts.

Ca uses of Conflict

In conflicts over open-source software we can identify four major
issues:

• Who gets to make binding decisions about a project?

• Who gets credit or blame for what?

Homesteading the Noosphere

99

22 December 2000 17:46

The Cathedral and the Bazaar

• How to reduce duplication of effort and prevent rogue ver-
sions from complicating bug tracking?

• What is the Right Thing, technically speaking?

If we take a second look at the ‘‘What is the Right Thing’’ issue,
however, it tends to vanish. For any such question, either there is
an objective way to decide it accepted by all parties or there isn’t.
If there is, game over and everybody wins. If there isn’t, it reduces
to ‘‘Who decides?’’

Accordingly, the three problems a conflict-resolution theory has to
resolve about a project are (a) where the buck stops on design
decisions, (b) how to decide which contributors are credited and
how, and (c) how to keep a project group and product from fis-
sioning into multiple branches.

The role of ownership customs in resolving issues (a) and (c) is
clear. Custom affirms that the owners of the project make the
binding decisions. We have previously observed that custom also
exerts heavy pressure against dilution of ownership by forking.

It’s instructive to notice that these customs make sense even if one
forgets the reputation game and examines them from within a
pure ‘craftmanship’ model of the hacker culture. In this view these
customs have less to do with the dilution of reputation incentives
than with protecting a craftsman’s right to execute his vision in his
chosen way.

The craftsmanship model is not, however, sufficient to explain
hacker customs about issue (b), who gets credit for what—
because a pure craftsman, one unconcerned with the reputation
game, would have no motive to care. To analyze these, we need to
take the Lockean theory one step further and examine conflicts
and the operation of property rights within projects as well as
between them.

100

22 December 2000 17:46

Project Structures and Ownership

The trivial case is that in which the project has a single owner/
maintainer. In that case there is no possible conflict. The owner
makes all decisions and collects all credit and blame. The only
possible conflicts are over succession issues—who gets to be the
new owner if the old one disappears or loses interest. The commu-
nity also has an interest, under issue (c), in preventing forking.
These interests are expressed by a cultural norm that an owner/
maintainer should publicly hand title to someone if he or she can
no longer maintain the project.

The simplest non-trivial case is when a project has multiple co-
maintainers working under a single ‘benevolent dictator’ who
owns the project. Custom favors this mode for group projects; it
has been shown to work on projects as large as the Linux kernel
or Emacs, and solves the ‘‘who decides’’ problem in a way that is
not obviously worse than any of the alternatives.

Typically, a benevolent-dictator organization evolves from an
owner-maintainer organization as the founder attracts contribu-
tors. Even if the owner stays dictator, it introduces a new level of
possible disputes over who gets credited for what parts of the
project.

In this situation, custom places an obligation on the owner/dicta-
tor to credit contributors fairly (through, for example, appropriate
mentions in README or history files). In terms of the Lockean
property model, this means that by contributing to a project you
earn part of its reputation return (positive or negative).

Pursuing this logic, we see that a benevolent dictator does not in
fact own his entire project absolutely. Though he has the right to
make binding decisions, he in effect trades away shares of the total
reputation return in exchange for others’ work. The analogy with
sharecropping on a farm is almost irresistible, except that a con-
tributor’s name stays in the credits and continues to ‘earn’ to some
degree even after that contributor is no longer active.

Homesteading the Noosphere

101

22 December 2000 17:46

The Cathedral and the Bazaar

As benevolent-dictator projects add more participants, they tend
to develop two tiers of contributors; ordinary contributors and co-
developers. A typical path to becoming a co-developer is taking
responsibility for a major subsystem of the project. Another is to
take the role of ‘lord high fixer’, characterizing and fixing many
bugs. In this way or others, co-developers are the contributors
who make a substantial and continuing investment of time in the
project.

The subsystem-owner role is particularly important for our analy-
sis and deserves further examination. Hackers like to say that
“authority follows responsibility”. A co-developer who accepts
maintainance responsibility for a given subsystem generally gets to
control both the implementation of that subsystem and its inter-
faces with the rest of the project, subject only to correction by the
project leader (acting as architect). We observe that this rule effec-
tively creates enclosed properties on the Lockean model within a
project, and has exactly the same conflict-prevention role as other
property boundaries.

By custom, the ‘dictator’ or project leader in a project with co-
developers is expected to consult with those co-developers on key
decisions. This is especially so if the decision concerns a subsystem
that a co-developer ‘owns’ (that is, has invested time in and taken
responsibility for). A wise leader, recognizing the function of the
project’s internal property boundaries, will not lightly interfere
with or reverse decisions made by subsystem owners.

Some very large projects discard the benevolent dictator model
entirely. One way to do this is turn the co-developers into a voting
committee (as with Apache). Another is rotating dictatorship, in
which control is occasionally passed from one member to another
within a circle of senior co-developers; the Perl developers orga-
nize themselves this way.

Such complicated arrangements are widely considered unstable
and difficult. Clearly this perceived difficulty is largely a function
of the known hazards of design-by-committee, and of committees

102

22 December 2000 17:46

themselves; these are problems the hacker culture consciously
understands. However, I think some of the visceral discomfort
hackers feel about committee or rotating-chair organizations is
that they’re hard to fit into the unconscious Lockean model hack-
ers use for reasoning about the simpler cases. It’s problematic, in
these complex organizations, to do an accounting of either owner-
ship in the sense of control or ownership of reputation returns. It’s
hard to see where the internal boundaries are, and thus hard to
avoid conflict unless the group enjoys an exceptionally high level
of harmony and trust.

Conflict and Conflict Resolution

We’ve seen that within projects, an increasing complexity of roles
is expressed by a distribution of design authority and partial prop-
erty rights. While this is an efficient way to distribute incentives, it
also dilutes the authority of the project leader—most importantly,
it dilutes the leader’s authority to squash potential conflicts.

While technical arguments over design might seem the most obvi-
ous risk for internecine conflict, they are seldom a serious cause of
strife. These are usually relatively easily resolved by the territorial
rule that authority follows responsibility.

Another way of resolving conflicts is by seniority—if two contrib-
utors or groups of contributors have a dispute, and the dispute
cannot be resolved objectively, and neither owns the territory of
the dispute, the side that has put the most work into the project as
a whole (that is, the side with the most property rights in the
whole project) wins.

(Equivalently, the side with the least invested loses. Interestingly
this happens to be the same heuristic that many relational
database engines use to resolve deadlocks. When two threads are
deadlocked over resources, the side with the least invested in the
current transaction is selected as the deadlock victim and is termi-
nated. This usually selects the longest running transaction, or the
more senior, as the victor.)

Homesteading the Noosphere

103

22 December 2000 17:46

The Cathedral and the Bazaar

These rules generally suffice to resolve most project disputes.
When they do not, fiat of the project leader usually suffices. Dis-
putes that survive both these filters are rare.

Conflicts do not, as a rule, become serious unless these two crite-
ria (“authority follows responsibility” and “seniority wins”) point
in different directions, and the authority of the project leader is
weak or absent. The most obvious case in which this may occur is
a succession dispute following the disappearance of the project
lead. I have been in one fight of this kind. It was ugly, painful,
protracted, only resolved when all parties became exhausted
enough to hand control to an outside person, and I devoutly hope
I am never anywhere near anything of the kind again.

Ultimately, all of these conflict-resolution mechanisms rest on the
entire hacker community’s willingness to enforce them. The only
available enforcement mechanisms are flaming and shunning—
public condemnation of those who break custom, and refusal to
cooperate with them after they have done so.

Acculturation Mechanisms
and the Link to Academia

An early version of this essay posed the following research ques-
tion: how does the community inform and instruct its members as
to its customs? Are the customs self-evident or self-organizing at a
semi-conscious level? Are they taught by example? Are they taught
by explicit instruction?

Teaching by explicit instruction is clearly rare, if only because few
explicit descriptions of the culture’s norms have existed for
instructional use up to now.

Many norms are taught by example. To cite one very simple case,
there is a norm that every software distribution should have a file
called README or READ.ME that contains first-look instruc-
tions for browsing the distribution. This convention has been well
established since at least the early 1980s; it has even, occasionally,

104

22 December 2000 17:46

been written down. But one normally derives it from looking at
many distributions.

On the other hand, some hacker customs are self-organizing once
one has acquired a basic (perhaps unconscious) understanding of
the reputation game. Most hackers never have to be taught the
three taboos I listed earlier in this essay, or at least would claim if
asked that they are self-evident rather than transmitted. This phe-
nomenon invites closer analysis—and perhaps we can find its
explanation in the process by which hackers acquire knowledge
about the culture.

Many cultures use hidden clues (more precisely ‘mysteries’ in the
religio/mystical sense) as an acculturation mechanism. These are
secrets that are not revealed to outsiders, but are expected to be
discovered or deduced by the aspiring newbie. To be accepted
inside, one must demonstrate that one both understands the mys-
tery and has learned it in a culturally sanctioned way.

The hacker culture makes unusually conscious and extensive use
of such clues or tests. We can see this process operating at at least
three levels:

• Password-like specific mysteries. As one example, there is a
Usenet newsgroup called alt.sysadmin.recovery that has a very
explicit such secret; you cannot post without knowing it, and
knowing it is considered evidence you are fit to post. The reg-
ulars have a strong taboo against revealing this secret.

• The requirement of initiation into certain technical mysteries.
One must absorb a good deal of technical knowledge before
one can give valued gifts (e.g., one must know at least one of
the major computer languages). This requirement functions in
the large in the way hidden clues do in the small, as a filter for
qualities (such as capability for abstract thinking, persistence,
and mental flexibility) that are necessary to function in the
culture.

Homesteading the Noosphere

105

22 December 2000 17:46

The Cathedral and the Bazaar

• Social-context mysteries. One becomes involved in the culture
through attaching oneself to specific projects. Each project is a
live social context of hackers that the would-be contributor
has to investigate and understand socially as well as techni-
cally in order to function. (Concretely, a common way one
does this is by reading the project’s web pages and/or email
archives.) It is through these project groups that newbies
experience the behavioral example of experienced hackers.

In the process of acquiring these mysteries, the would-be hacker
picks up contextual knowledge that (after a while) does make the
three taboos and other customs seem self-evident.

One might, incidentally, argue that the structure of the hacker gift
culture itself is its own central mystery. One is not considered
acculturated (concretely: no one will call you a hacker) until one
demonstrates a gut-level understanding of the reputation game
and its implied customs, taboos, and usages. But this is trivial; all
cultures demand such understanding from would-be joiners. Fur-
thermore the hacker culture evinces no desire to have its internal
logic and folkways kept secret—or, at least, nobody has ever
flamed me for revealing them!

Respondents to this essay too numerous to list have pointed out
that hacker ownership customs seem intimately related to (and
may derive directly from) the practices of the academic world,
especially the scientific research commmunity. This research com-
munity has similar problems in mining a territory of potentially
productive ideas, and exhibits very similar adaptive solutions to
those problems in the ways it uses peer review and reputation.

Since many hackers have had formative exposure to academia (it’s
common to learn how to hack while in college), the extent to
which academia shares adaptive patterns with the hacker culture
is of more than casual interest in understanding how these cus-
toms are applied.

106

22 December 2000 17:46

Obvious parallels with the hacker ‘gift culture’, as I have charac-
terized it, abound in academia. Once a researcher achieves tenure,
there is no need to worry about survival issues. (Indeed, the con-
cept of tenure can probably be traced back to an earlier gift cul-
ture in which ‘‘natural philosophers’’ were primarily wealthy
gentlemen with time on their hands to devote to research.) In the
absence of survival issues, reputation enhancement becomes the
driving goal, which encourages sharing of new ideas and research
through journals and other media. This makes objective functional
sense because scientific research, like the hacker culture, relies
heavily on the idea of ‘standing upon the shoulders of giants’, and
not having to rediscover basic principles over and over again.

Some have gone so far as to suggest that hacker customs are
merely a reflection of the research community’s folkways and have
actually (in most cases) been acquired there by individual hackers.
This probably overstates the case, if only because hacker custom
seems to be readily acquired by intelligent high-schoolers!

Gift Outcompetes Exchange

There is a more interesting possibility here. I suspect academia and
the hacker culture share adaptive patterns not because they’re
genetically related, but because they’ve both evolved the one most
optimal social organization for what they’re trying to do, given
the laws of nature and the instinctive wiring of human beings. The
verdict of history seems to be that free-market capitalism is the
globally optimal way to cooperate for economic efficiency; per-
haps, in a similar way, the reputation-game gift culture is the glob-
ally optimal way to cooperate for generating (and checking!) high-
quality creative work.

Support for this theory comes from a large body of psychological
studies on the interaction between art and reward.11 These studies
have received less attention than they should, in part perhaps
because their popularizers have shown a tendency to overinterpret
them into general attacks against the free market and intellectual

Homesteading the Noosphere

107

22 December 2000 17:46

The Cathedral and the Bazaar

property. Nevertheless, their results do suggest that some kinds of
scarcity-economics rewards actually decrease the productivity of
creative workers such as programmers.

Psychologist Theresa Amabile of Brandeis University, cautiously
summarizing the results of a 1984 study of motivation and
reward, observed: ‘‘It may be that commissioned work will, in
general, be less creative than work that is done out of pure inter-
est.’’ Amabile goes on to observe: ‘‘The more complex the activity,
the more it’s hurt by extrinsic reward.’’ Interestingly, the studies
suggest that flat salaries don’t demotivate, but piecework rates and
bonuses do.

Thus, it may be economically smart to give performance bonuses
to people who flip burgers or dig ditches, but it’s probably smarter
to decouple salary from performance in a programming shop and
let people choose their own projects (both trends that the open-
source world takes to their logical conclusions). Indeed, these
results suggest that the only time it is a good idea to reward per-
formance in programming is when the programmer is so moti-
vated that he or she would have worked without the reward!

Other researchers in the field are willing to point a finger straight
at the issues of autonomy and creative control that so preoccupy
hackers. ‘‘To the extent one’s experience of being self-determined
is limited,’’ said Richard Ryan, associate psychology professor at
the University of Rochester, ‘‘one’s creativity will be reduced as
well.’’

In general, presenting any task as a means rather than an end in
itself seems to demotivate. Even winning a competition with oth-
ers or gaining peer esteem can be demotivating in this way if the
victory is experienced as work for reward (which may explain
why hackers are culturally prohibited from explicitly seeking or
claiming that esteem).

To complicate the management problem further, controlling verbal
feedback seems to be just as demotivating as piecework payment.

108

22 December 2000 17:46

Ryan found that corporate employees who were told, ‘‘Good,
you’re doing as you should’’ were ‘‘significantly less intrinsically
motivated than those who received feedback informationally.’’

It may still be intelligent to offer incentives, but they have to come
without attachments to avoid gumming up the works. There is a
critical difference (Ryan observes) between saying, ‘‘I’m giving you
this reward because I recognize the value of your work,’’ and
‘‘You’re getting this reward because you’ve lived up to my stan-
dards.’’ The first does not demotivate; the second does.

In these psychological observations we can ground a case that an
open-source development group will be substantially more pro-
ductive (especially over the long term, in which creativity becomes
more critical as a productivity multiplier) than an equivalently
sized and skilled group of closed-source programmers (de)moti-
vated by scarcity rewards.

This suggests from a slightly different angle one of the specula-
tions in The Cathedral and the Bazaar; that, ultimately, the indus-
trial/factory mode of software production was doomed to be
outcompeted from the moment capitalism began to create enough
of a wealth surplus that many programmers could live in a post-
scarcity gift culture.

Indeed, it seems the prescription for highest software productivity
is almost a Zen paradox; if you want the most efficient produc-
tion, you must give up trying to make programmers produce.
Handle their subsistence, give them their heads, and forget about
deadlines. To a conventional manager this sounds crazily indul-
gent and doomed—but it is exactly the recipe with which the
open-source culture is now clobbering its competition.

Homesteading the Noosphere

109

22 December 2000 17:46

The Cathedral and the Bazaar

Conclusion: From Custom
to Customary Law

We have examined the customs that regulate the ownership and
control of open-source software. We have seen how they imply an
underlying theory of property rights homologous to the Lockean
theory of land tenure. We have related that to an analysis of the
hacker culture as a gift culture in which participants compete for
prestige by giving time, energy, and creativity away. We have
examined the implications of this analysis for conflict resolution in
the culture.

The next logical question to ask is: “Why does this matter?”
Hackers developed these customs without conscious analysis and
(up to now) have followed them without conscious analysis. It’s
not immediately clear that conscious analysis has gained us any-
thing practical—unless, perhaps, we can move from description to
prescription and deduce ways to improve the functioning of these
customs.

We have found a close logical analogy for hacker customs in the
theory of land tenure under the Anglo-American common-law tra-
dition. Historically,12 the European tribal cultures that invented
this tradition improved their dispute-resolution systems by moving
from a system of unarticulated, semi-conscious custom to a body
of explicit customary law memorized by tribal wisemen—and
eventually, written down.

Perhaps, as our population rises and acculturation of all new
members becomes more difficult, it is time for the hacker culture
to do something analogous—to develop written codes of good
practice for resolving the various sorts of disputes that can arise in
connection with open-source projects, and a tradition of arbitra-
tion in which senior members of the community may be asked to
mediate disputes.

The analysis in this essay suggests the outlines of what such a code
might look like, making explicit that which was previously

110

22 December 2000 17:46

implicit. No such codes could be imposed from above; they would
have to be voluntarily adopted by the founders or owners of indi-
vidual projects. Nor could they be completely rigid, as the pres-
sures on the culture are likely to change over time. Finally, for
enforcement of such codes to work, they would have to reflect a
broad consensus of the hacker tribe.

I have begun work on such a code, tentatively titled the “Malvern
Protocol” after the little town where I live. If the general analysis
in this paper becomes sufficiently widely accepted, I will make the
Malvern Protocol publicly available as a model code for dispute
resolution. Parties interested in critiquing and developing this
code, or just offering feedback on whether they think it’s a good
idea or not, are invited to contact me by email, esr@thyrsus.com.

Questions for Further Research

The culture’s (and my own) understanding of large projects that
don’t follow a benevolent-dictator model is weak. Most such pro-
jects fail. A few become spectacularly successful and important
(Perl, Apache, KDE). Nobody really understands where the differ-
ence lies. There’s a vague sense abroad that each such project is sui
generis and stands or falls on the group dynamic of its particular
members, but is this true or are there replicable strategies that a
group can follow?

Homesteading the Noosphere

111

22 December 2000 17:46

The Magic Cauldron

✦ ✦ ✦

This essay analyzes the evolving economic substrate of the

open-source phenomenon. I first explode some prevalent

myths about the funding of program development and the

price structure of software. I then present a game-theory

analysis of the stability of open-source cooperation. I pre-

sent nine models for sustainable funding of open-source

development; two non-profit, seven for-profit. I then con-

tinue to develop a qualitative theory of when it is eco-

nomically rational for software to be closed. I then

examine some novel additional mechanisms the market is

now inventing to fund for-profit open-source develop-

ment, including the reinvention of the patronage system

and task markets. I conclude with some tentative predic-

tions of the future.

113

22 December 2000 18:26

22 December 2000 18:26

Indistinguishable from Magic

In Welsh myth, the goddess Ceridwen owned a great cauldron that
would magically produce nourishing food—when commanded by
a spell known only to the goddess. In modern science, Buckmin-
ster Fuller gave us the concept of ‘ephemeralization’, technology
becoming both more effective and less expensive as the physical
resources invested in early designs are replaced by more and more
information content. Arthur C. Clarke connected the two by
observing that ‘‘Any sufficiently advanced technology is indistin-
guishable from magic’’.

To many people, the successes of the open-source community seem
like an implausible form of magic. High-quality software material-
izes for free, which is nice while it lasts but hardly seems sustain-
able in the real world of competition and scarce resources. What’s
the catch? Is Ceridwen’s cauldron just a conjuring trick? And if
not, how does ephemeralization work in this context—what spell
is the goddess speaking?

Beyond Geeks Bearing Gifts

The experience of the open-source culture has certainly con-
founded many of the assumptions of people who learned about
software development outside it. The Cathedral and the Bazaar
described the ways in which decentralized cooperative software
development effectively overturns Brooks’s Law, leading to
unprecedented levels of reliability and quality on individual pro-
jects. Homesteading the Noosphere, examined the social dynamics
within which this ‘bazaar’ style of development is situated, argu-
ing that it is most effectively understood not in conventional

The Magic Cauldron

115

22 December 2000 18:26

The Cathedral and the Bazaar

exchange-economy terms but as what anthropologists call a gift
culture in which members compete for status by giving things
away. In this essay I begin by exploding some common myths
about software production economics; then continue the line of
analysis of these essays into the realm of economics, game theory
and business models, developing new conceptual tools needed to
understand the way that the gift culture of open-source developers
can sustain itself in an exchange economy.

In order to pursue this line of analysis without distraction, we’ll
need to abandon (or at least agree to temporarily ignore) the gift-
culture level of explanation. Homesteading the Noosphere posited
that gift culture behavior arises in situations where survival goods
are abundant enough to make the exchange game no longer very
interesting; but while this appears sufficiently powerful as a psy-
chological explanation of behavior, it lacks suffiency as an expla-
nation of the mixed economic context in which most open-source
developers actually operate. For most, the exchange game has lost
its appeal but not its power to constrain. Their behavior has to
make sufficient material-scarcity–economics sense to keep them in
a gift-culture–supporting zone of surplus.

Therefore, this essay will consider (from entirely within the realm
of scarcity economics) the modes of cooperation and exchange
that sustain open-source development. While doing so it will
answer the pragmatic question ‘‘How do I make money at this?’’
in detail and with examples. First, though, I will show that much
of the tension behind that question derives from prevailing folk
models of software-production economics that are false to fact.

(A final note before the exposition: the discussion and advocacy of
open-source development in this essay should not be construed as
a case that closed-source development is intrinsically wrong, nor
as a brief against intellectual-property rights in software, nor as an
altruistic appeal to ‘share’. While these arguments are still beloved
to a vocal minority in the open-source development community,
experience since The Cathedral and the Bazaar was published has

116

22 December 2000 18:26

made it clear that they are unnecessary. An entirely sufficient case
for open-source development rests on its engineering and eco-
nomic outcomes—better quality, higher reliability, lower costs,
and increased choice.)

The Manufacturing Delusion

We need to begin by noticing that computer programs, like all
other kinds of tools or capital goods, have two distinct kinds of
economic value. They have use value and sale value.

The use value of a program is its economic value as a tool, a pro-
ductivity multiplier. The sale value of a program is its value as a
salable commodity. (In professional economist-speak, sale value is
value as a final good, and use value is value as an intermediate
good.)

When most people try to reason about software-production eco-
nomics, they tend to assume a ‘factory model’, which is founded
on the following fundamental premises:

• Most developer time is paid for by sale value.

• The sale value of software is proportional to its development
cost (i.e., the cost of the resources required to functionally
replicate it) and to its use value.

In other words, people have a strong tendency to assume that soft-
ware has the value characteristics of a typical manufactured good.
But both of these assumptions are demonstrably false.

First, code written for sale is only the tip of the programming ice-
berg. In the pre-microcomputer era it used to be a commonplace
that 90% of all the code in the world was written in-house at
banks and insurance companies. This is probably no longer the
case — other industries are much more software-intensive now, and
the finance industry’s share of the total must have accordingly
dropped — but we’ll see shortly that there is empirical evidence
that approximately 95% of code is still written in-house.

The Magic Cauldron

117

22 December 2000 18:26

The Cathedral and the Bazaar

This code includes most of the stuff of MIS, the financial- and
database-software customizations every medium and large com-
pany needs. It includes technical-specialist code like device drivers.
Almost nobody makes money selling device drivers, a point we’ll
return to later. It includes all kinds of embedded code for our
increasingly microchip-driven machines—from machine tools and
jet airliners to cars to microwave ovens and toasters.

Most such in-house code is integrated with its environment in
ways that make reusing or copying it very difficult. (This is true
whether the environment is a business office’s set of procedures or
the fuel-injection system of a combine harvester.) Thus, as the
environment changes, work is continually needed to keep the soft-
ware in step.

This is called maintenance, and any software engineer or systems
analyst will tell you that it makes up the vast majority (more than
75%) of what programmers get paid to do. Accordingly, most
programmer-hours are spent (and most programmer salaries are
paid for) writing or maintaining in-house code that has no sale
value at all—a fact the reader may readily check by examining the
listings of programming jobs in any newspaper with a ‘Help
Wanted’ section.

Scanning the employment section of your local newspaper is an
enlightening experiment that I urge the reader to perform for him-
or herself. Examine the jobs listings under programming, data
processing, and software engineering for positions that involve the
development of software. Categorize each such job according to
whether the software is being developed for use or for sale.

It will quickly become clear that, even given the most inclusive
definition of “for sale”, at least 19 in 20 of the salaries offered are
being funded strictly by use value (that is, value as an intermediate
good). This is our reason for believing that only 5% of the

118

22 December 2000 18:26

industry is sale-value–driven. Note, however, that the rest of the
analysis in this essay is relatively insensitive to this number; if it
were 15% or even 20%, the economic consequences would
remain essentially the same.

When I speak at technical conferences, I usually begin my talk by
asking two questions: how many in the audience are paid to write
software, and for how many do their salaries depend on the sale
value of software. I generally get a forest of hands for the first
question, few or none for the second, and considerable audience
surprise at the proportion.

Second, the theory that the sale value of software is coupled to its
development or replacement costs is even more easily demolished
by examining the actual behavior of consumers. There are many
goods for which a proportion of this kind actually holds (before
depreciation) — food, cars, machine tools. There are even many
intangible goods for which sale value couples strongly to develop-
ment and replacement cost—rights to reproduce music or maps or
databases, for example. Such goods may retain or even increase
their sale value after their original vendor is gone.

By contrast, when a software product’s vendor goes out of busi-
ness (or if the product is merely discontinued), the maximum price
consumers will pay for it rapidly falls to near zero regardless of its
theoretical use value or the development cost of a functional
equivalent. (To check this assertion, examine the remainder bins at
any software store near you.)

The behavior of retailers when a vendor folds is very revealing. It
tells us that they know something the vendors don’t. What they
know is this: the price a consumer will pay is effectively capped by
the expected future value of vendor service (where “service” is
here construed broadly to include enhancements, upgrades, and
follow-on projects).

The Magic Cauldron

119

22 December 2000 18:26

The Cathedral and the Bazaar

In other words, software is largely a service industry operating
under the persistent but unfounded delusion that it is a manufac-
turing industry.

It is worth examining why we normally tend to believe otherwise.
It may simply be because the small portion of the software
industry that manufactures for sale is also the only part that
advertises its product. The common mental bias that regards man-
ufacturing as more ‘real’ than services, because it produces things
you can heft, may be at work.1 Also, some of the most visible and
heavily advertised products are ephemera like games that have lit-
tle in the way of continuing service requirements (the exception,
rather than the rule).2

It is also worth noting that the manufacturing delusion encourages
price structures that are pathologically out of line with the actual
breakdown of development costs. If (as is generally accepted) over
75% of a typical software project’s life-cycle costs will be in main-
tenance and debugging and extensions, then the common price
policy of charging a high fixed purchase price and relatively low
or zero support fees is bound to lead to results that serve all par-
ties poorly.

Consumers lose because, even though software is a service
industry, the incentives in the factory model all work against a
vendor’s offering competent service. If the vendor’s money comes
from selling bits, most effort will go into making bits and shoving
them out the door; the help desk, not a profit center, will become a
dumping ground for the least effective employees and get only
enough resources to avoid actively alienating a critical number of
customers.

It gets worse. Actual use means service calls, which cut into the
profit margin unless you’re charging for service. In the open-
source world, you seek the largest possible user base, so as to get
maximum feedback and the most vigorous possible secondary
markets; in the closed-source you seek as many buyers but as few
actual users as possible. Therefore the logic of the factory model

120

22 December 2000 18:26

most strongly rewards vendors who produce shelfware—software
that is sufficiently well marketed to make sales but actually useless
in practice.

The other side of this coin is that most vendors buying this factory
model will also fail in the longer run. Funding indefinitely-contin-
uing support expenses from a fixed price is only viable in a market
that is expanding quickly enough to cover the support and life-
cycle costs entailed in yesterday’s sales with tomorrow’s revenues.
Once a market matures and sales slow down, most vendors will
have no choice but to cut expenses by orphaning the product.3

Whether this is done explicitly (by discontinuing the product) or
implicitly (by making support hard to get), it has the effect of driv-
ing customers to competitors—because it destroys the product’s
expected future value, which is contingent on that service. In the
short run, one can escape this trap by making bug-fix releases pose
as new products with a new price attached, but consumers quickly
tire of this. In the long run, therefore, the only way to escape is to
have no competitors—that is, to have an effective monopoly on
one’s market. In the end, there can be only one.

And, indeed, we have repeatedly seen this support-starvation fail-
ure mode kill off even strong second-place competitors in a mar-
ket niche. (The pattern should be particularly clear to anyone who
has ever surveyed the history of proprietary PC operating systems,
word processors, accounting programs, or business software in
general.) The perverse incentives set up by the factory model lead
to a winner-take-all market dynamic in which even the winner’s
customers end up losing.

If not the factory model, then what? To handle the real cost struc-
ture of the software life cycle efficiently (in both the informal and
economics-jargon senses of “efficiency”), we require a price struc-
ture founded on service contracts, subscriptions, and a continuing
exchange of value between vendor and customer. This is already
the price structure of the largest merchant software products such
as ERP (Enterprise Resource Planning) systems, for which the

The Magic Cauldron

121

22 December 2000 18:26

The Cathedral and the Bazaar

development costs are so large that no fixed purchase price could
possibly cover them; firms like Baan and Peoplesoft actually make
their money from after-sale consulting fees. Under the efficiency-
seeking conditions of the free market we can predict that this is
the sort of price structure most of a mature software industry will
ultimately follow.

The foregoing begins to give us some insight into why open-source
software increasingly poses not merely a technological but an eco-
nomic challenge to the prevailing order. The effect of making soft-
ware ‘free’, it seems, is to force us into that service-fee–dominated
world — and to expose what a relatively weak prop the sale value
of the secret bits in closed-source software was all along.

This transition will not be quite the wrench it may at first appear.
Many consumers find that pirate copies of packaged software
(especially games, operating systems, and popular productivity
tools) are readily available to them. Thus, many proprietary soft-
ware sale prices are, from the point of view of the consumer, only
worth paying as claims on other goods: vendor support, or the
paper manuals, or a feeling of virtuousness. Commercial distribu-
tions of so-called ‘free’ software often justify their price to the cus-
tomer in exactly the same way—the only difference is that their
vendors do not fool themselves into thinking that the bits alone
necessarily have value to the customer.

The term ‘free’ is misleading in another way as well. Lowering the
cost of a good tends to increase, rather than decrease, total invest-
ment in the people and infrastructure that sustains it. When the
price of cars goes down, the demand for auto mechanics goes
up — which is why even those 5% of programmers now compen-
sated by sale-value would be very unlikely to suffer in an open-
source world. The people who lose in the transition won’t be
programmers, they will be investors who have bet on closed-
source strategies where they’re not economically viable.

122

22 December 2000 18:26

The ‘‘Information Wants
to Be Free’’ Myth

There is another myth, equal and opposite to the factory-model
delusion, which often confuses people’s thinking about the eco-
nomics of open-source software. It is that ‘‘information wants to
be free’’. This usually unpacks to a claim that the zero marginal
cost of reproducing digital information implies that its clearing
price ought to be zero (or that a market full of duplicators will
force it to zero).

Some kinds of information really do want to be free, in the weak
sense that their value goes up as more people have access to
them — a technical standards document is a good example. But the
myth that all information wants to be free is readily exploded by
considering the value of information that constitutes a privileged
pointer to a rivalrous good—a treasure map, say, or a Swiss bank
account number, or a claim on services such as a computer
account password. Even though the claiming information can be
duplicated at zero cost, the item being claimed cannot be. Hence,
the nonzero marginal cost for the item can be inherited by the
claiming information.

We mention this myth mainly to assert that it is almost unrelated
to the economic-utility arguments for open source; as we’ll see
later, those would generally hold up well even under the assump-
tion that software actually does have the (nonzero) value structure
of a manufactured good. We therefore have no need to tackle the
question of whether software ‘should’ be free or not.

The Inverse Commons

Having cast a skeptical eye on one prevailing model, let’s see if we
can build another—a hard-nosed economic explanation of what
makes open-source cooperation sustainable.

This is a question that bears examination on a couple of different
levels. On one level, we need to explain the behavior of

The Magic Cauldron

123

22 December 2000 18:26

The Cathedral and the Bazaar

individuals who contribute to open-source projects; on another,
we need to understand the economic forces that sustain coopera-
tion on open-source projects like Linux or Apache.

Again, we must first demolish a widespread folk model that inter-
feres with understanding. Over every attempt to explain coopera-
tive behavior there looms the shadow of Garret Hardin’s ‘‘Tragedy
of the Commons’’.

Hardin famously asks us to imagine a green held in common by a
village of peasants, who graze their cattle there. But grazing
degrades the commons, tearing up grass and leaving muddy
patches, which re-grow their cover only slowly. If there is no
agreed-upon (and enforced!) policy to allocate grazing rights that
prevents overgrazing, all parties’ incentives push them to run as
many cattle as quickly as possible, trying to extract maximum
value before the commons degrades into a sea of mud.

Most people have an intuitive model of cooperative behavior that
goes much like this. The tragedy of the commons actually stems
from two linked problems, one of overuse and another of under-
provision. On the demand side, the commons situation encourages
a race to the bottom by overuse—what economists call a con-
gested–public-good problem. On the supply side, the commons
rewards free-rider behavior—removing or diminishing incentives
for individual actors to invest in developing more pasturage.

The tragedy of the commons predicts only three possible out-
comes. One is the sea of mud. Another is for some actor with
coercive power to enforce an allocation policy on behalf of the vil-
lage (the communist solution). The third is for the commons to
break up as village members fence off bits they can defend and
manage sustainably (the property-rights solution).

When people reflexively apply this model to open-source coopera-
tion, they expect it to be unstable with a short half-life. Since
there’s no obvious way to enforce an allocation policy for pro-
grammer time over the Internet, this model leads straight to a

124

22 December 2000 18:26

prediction that the commons will break up, with various bits of
software being taken closed-source and a rapidly decreasing
amount of work being fed back into the communal pool.

In fact, it is empirically clear that the trend is opposite to this. The
trend in breadth and volume of open-source development can be
measured by submissions per day at Metalab and SourceForge
(the leading Linux source sites) or announcements per day at
freshmeat.net (a site dedicated to advertising new software
releases). Volume on both is steadily and rapidly increasing.
Clearly there is some critical way in which the ‘‘Tragedy of the
Commons’’ model fails to capture what is actually going on.

Part of the answer certainly lies in the fact that using software
does not decrease its value. Indeed, widespread use of open-source
software tends to increase its value, as users fold in their own fixes
and features (code patches). In this inverse commons, the grass
grows taller when it’s grazed upon.

That this public good cannot be degraded by overuse takes care of
half of Hardin’s tragedy, the congested–public-goods problem. It
doesn’t explain why open source doesn’t suffer from underprovi-
sion. Why don’t people who know the open-source community
exists universally exhibit free-rider behavior, waiting for others to
do the work they need, or (if they do the work themselves) not
bothering to contribute the work back into the commons?

Part of the answer lies in the fact that people don’t merely need
solutions, they need solutions on time. It’s seldom possible to pre-
dict when someone else will finish a given piece of needed work. If
the payoff from fixing a bug or adding a feature is sufficient to any
potential contributor, that person will dive in and do it (at which
point the fact that everyone else is a free rider becomes irrelevant).

Another part of the answer lies in the fact that the putative market
value of small patches to a common source base is hard to cap-
ture. Suppose I write a fix for an irritating bug, and suppose many
people realize the fix has money value; how do I collect from all

The Magic Cauldron

125

22 December 2000 18:26

The Cathedral and the Bazaar

those people? Conventional payment systems have high enough
overheads to make this a real problem for the sorts of micropay-
ments that would usually be appropriate.

It may be more to the point that this value is not merely hard to
capture, in the general case it’s hard to even assign. As a thought
experiment, let us suppose that the Internet came equipped with
the theoretically ideal micropayment system—secure, universally
accessible, zero-overhead. Now let’s say you have written a patch
labeled ‘‘Miscellaneous Fixes to the Linux Kernel’’. How do you
know what price to ask? How would a potential buyer, not having
seen the patch yet, know what is reasonable to pay for it?

What we have here is almost like a funhouse-mirror image of F. A.
Hayek’s ‘calculation problem’—it would take a superbeing, both
able to evaluate the functional worth of patches and trusted to set
prices accordingly, to lubricate trade.

Unfortunately, there’s a serious superbeing shortage, so patch
author J. Random Hacker is left with two choices: sit on the
patch, or throw it into the pool for free.

Sitting on the patch gains nothing. Indeed, it incurs a future
cost — the effort involved in re-merging the patch into the source
base in each new release. So the payoff from this choice is actually
negative (and multiplied by the rapid release tempo characteristic
of open-source projects).

To put it more positively, the contributor gains by passing main-
tainance overhead of the patch to the source-code owners and the
rest of the project group. He also gains because others will
improve on his work in the future. Finally, because he won’t have
to maintain the patch himself, he will be able to afford more time
on other and larger customizations to suit his needs. The same
arguments that favor opening source for entire packages apply to
patches as well.

Throwing the patch in the pool may gain nothing, or it may
encourage reciprocal effort from others that will address some of

126

22 December 2000 18:26

J. Random’s problems in the future. This choice, apparently altru-
istic, is actually optimally selfish in a game-theoretic sense.

In analyzing this kind of cooperation, it is important to note that
while there is a free-rider problem (work may be underprovided in
the absence of money or money-equivalent compensation) it is not
one that scales with the number of end users (see endnote 1 for
discussion). The complexity and communications overhead of an
open-source project is almost entirely a function of the number of
developers involved; having more end users who never look at
source costs effectively nothing. It may increase the rate of silly
questions appearing on the project mailing lists, but this is rela-
tively easily forestalled by maintaining a Frequently Asked Ques-
tions list and blithely ignoring questioners who have obviously not
read it (and in fact both these practices are typical).

The real free-rider problems in open-source software are more a
function of friction costs in submitting patches than anything else.
A potential contributor with little stake in the cultural reputation
game (see Homesteading the Noosphere) may, in the absence of
money compensation, think ‘‘It’s not worth submitting this fix
because I’ll have to clean up the patch, write a ChangeLog entry,
and sign the FSF assignment papers ’’ It’s for this reason that
the number of contributors (and, at second order, the success of)
projects is strongly and inversely correlated with the number of
hoops each project makes a contributing user go through. Such
friction costs may be political as well as mechanical. Together I
think they explain why the loose, amorphous Linux culture has
attracted orders of magnitude more cooperative energy than the
more tightly organized and centralized BSD efforts—and why the
Free Software Foundation has receded in relative importance as
Linux has risen.

This is all good as far as it goes. But it is an after-the-fact explana-
tion of what J. Random Hacker does with his patch after he has
created it. The other half we need is an economic explanation of
how JRH was able to write that patch in the first place, rather

The Magic Cauldron

127

22 December 2000 18:26

The Cathedral and the Bazaar

than having to work on a closed-source program that might have
returned him sale value. What business models create niches in
which open-source development can flourish?

Reasons for Closing Source

Before taxonomizing open-source business models, we should deal
with exclusion payoffs in general. What exactly are we protecting
when we close source?

Let’s say you hire someone to write to order (say) a specialized
accounting package for your business. That problem won’t be
solved any better if the sources are closed rather than open; the
only rational reasons you might want them to be closed is if you
want to sell the package to other people, or deny its use to com-
petitors.

The obvious answer is that you’re protecting sale value, but for
the 95% of software written for internal use this doesn’t apply. So
what other gains are there in being closed?

That second case (protecting competitive advantage) bears a bit of
examination. Suppose you open-source that accounting package.
It becomes popular and benefits from improvements made by the
community. Now your competitor starts to use it. The competitor
gets the benefit without paying the development cost and cuts into
your business. Is this an argument against open-sourcing?

Maybe — and maybe not. The real question is whether your gain
from spreading the development load exceeds your loss due to
increased competition from the free rider. Many people tend to
reason poorly about this tradeoff through (a) ignoring the func-
tional advantage of recruiting more development help, and (b) not
treating the development costs as sunk. By hypothesis, you had to
pay the development costs anyway, so counting them as a cost of
open-sourcing (if you choose to do that) is mistaken.

Another reason often cited is the fear that disclosing source of a
particular special accounting function might be tantamount to

128

22 December 2000 18:26

revealing confidential aspects of your business plan. This is really
an argument not for closed source but against bad design; in a
properly-written accounting package, business knowledge should
not be expressed in code at all but rather in a schema or specifica-
tion language implemented by the accounting engine (for a closely
parallel case, consider the way that database schemas separate
business knowledge from the mechanics of the database engine).
The separation of function would enable you to guard the crown
jewels (the schema) while getting maximum benefit from open-
sourcing the engine.

There are other reasons for closing source that are outright irra-
tional. You might, for example, be laboring under the delusion
that closing the sources will make your business systems more
secure against crackers and intruders. If so, I recommend thera-
peutic conversation with a cryptographer immediately. The really
professional paranoids know better than to trust the security of
closed-source programs, because they’ve learned through hard
experience not to. Security is an aspect of reliability; only algo-
rithms and implementations that have been thoroughly peer-
reviewed can possibly be trusted as secure.

Use-Value Funding Models

A key fact that the distinction between use and sale value allows
us to notice is that only sale value is threatened by the shift from
closed to open source; use value is not.

If use value rather than sale value is really the major driver of soft-
ware development, and (as was argued in The Cathedral and the
Bazaar) open-source development is really more effective and effi-
cient than closed, then we should expect to find circumstances in
which expected use value alone sustainably funds open-source
development.

And in fact it is not difficult to identify at least two important
models in which full-time developer salaries for open-source pro-
jects are funded strictly out of use value.

The Magic Cauldron

129

22 December 2000 18:26

The Cathedral and the Bazaar

The Apa che Case: Cost-Sharing

Let’s say you work for a firm that has a business-critical require-
ment for a high-volume, high-reliability web server. Maybe it’s for
electronic commerce, maybe you’re a high-visibility media outlet
selling advertising, maybe you’re a portal site. You need 24/7
uptime, you need speed, and you need customizability.

How are you going to get these things? There are three basic
strategies you can pursue:

Buy a proprietary web server.

In this case, you are betting that the vendor’s agenda matches
yours and that the vendor has the technical competence to
implement properly. Even assuming both these things to be
true, the product is likely to come up short in customizability;
you will be able to modify it only through the hooks the ven-
dor has chosen to provide. We can see from the monthly
Netcraft surveys that this proprietary path is not a popular
one and is getting less popular all the time.

Roll your own.

Building your own web server is not an option to dismiss
instantly; web servers are not very complex, certainly less so
than browsers, and a specialized one can be very lean and
mean. Going this path, you can get the exact features and cus-
tomizability you want, though you’ll pay for it in develop-
ment time. Your firm may also find it has a problem when you
retire or leave.

Join the Apache group.

The Apache server was built by an Internet-connected group
of webmasters who realized that it was smarter to pool their
efforts into improving one code base than to run a large num-
ber of parallel development efforts. By doing this they were
able to capture both most of the advantages of roll-your-own
and the powerful debugging effect of massively-parallel peer
review.

130

22 December 2000 18:26

The advantage of the Apache choice is very strong. Just how
strong, we may judge from the monthly Netcraft survey, which
has shown Apache steadily gaining market share against all pro-
prietary web servers since its inception. As of November 2000,
Apache and its derivatives had 60% market share
(http://www.netcraft.com/survey/)—with no legal owner, no pro-
motion, and no contracted service organization behind it at all.

The Apache story generalizes to a model in which competing soft-
ware users find it to their advantage to cooperatively fund open-
source development because doing so gets them a better product,
at lower cost, than they could otherwise have.

The Cisco Case: Risk-Spreading

Some years ago, two programmers at Cisco (the networking-
equipment manufacturer) got assigned the job of writing a dis-
tributed print-spooling system for use on Cisco’s corporate
network. This was quite a challenge. Besides supporting the ability
for arbitrary user A to print at arbitrary printer B (which might be
in the next room or a thousand miles away), the system had to
make sure that in the event of a paper-out or toner-low condition
the job would get rerouted to an alternate printer near the target.
The system also needed to be able to report such problems to a
printer administrator.

The duo came up with a clever set of modifications
(http://www.tpp.org/CiscoPrint/) to the standard Unix print-
spooler software, plus some wrapper scripts, that did the job.
Then they realized that they, and Cisco, had a problem.

The problem was that neither of them was likely to be at Cisco
forever. Eventually, both programmers would be gone, and the
software would be unmaintained and begin to rot (that is, to grad-
ually fall out of sync with real-world conditions). No developer
likes to see this happen to his or her work, and the intrepid duo
felt Cisco had paid for a solution under the not unreasonable
expectation that it would outlast their own employment there.

The Magic Cauldron

131

22 December 2000 18:26

The Cathedral and the Bazaar

Accordingly, they went to their manager and urged him to autho-
rize the release of the print-spooler software as open source. Their
argument was that Cisco would have no sale value to lose, and
much else to gain. By encouraging the growth of a community of
users and co-developers spread across many corporations, Cisco
could effectively hedge against the loss of the software’s original
developers.

The Cisco story shows open source can function not only to lower
costs but to spread and mitigate risk. All parties find that the
openness of the source, and the presence of a collaborative com-
munity funded by multiple independent revenue streams, provides
a fail-safe that is itself economically valuable—sufficiently valu-
able to attract funding for it.

Why Sale Value Is Problematic

Open source makes it rather difficult to capture direct sale value
from software. The difficulty is not technical; source code is no
more nor less easily copied than binaries, and the enforcement of
copyright and license laws permitting capture of sale value would
not by necessity be any more difficult for open-source products
than it is for closed.

The difficulty lies rather with the nature of the social contract that
supports open-source development. For three mutually reinforcing
reasons, the major open-source licenses prohibit most of the sort
of restrictions on use, redistribution and modification that facili-
tate direct-sale revenue capture. To understand these reasons, we
must examine the social context within which the licenses evolved;
the Internet hacker culture (http://www.tuxedo.org/ ̃ esr/faqs/
hacker-howto.html).

Despite myths about the hacker culture still too widely believed
outside it, none of these reasons has to do with hostility to the
market. While a minority of hackers does indeed remain hostile to
the profit motive, the general willingness of the community to
cooperate with for-profit Linux packagers like Red Hat, SuSE, and

132

22 December 2000 18:26

Caldera demonstrates that most hackers will happily work with
the corporate world when it serves their ends. The real reasons
hackers frown on direct–revenue-capture licenses are more subtle
and interesting.

One reason has to do with symmetry. While most open-source
developers do not intrinsically object to others profiting from their
gifts, most also demand that no party (with the possible exception
of the originator of a piece of code) be in a privileged position to
extract profits. J. Random Hacker is willing for Fubarco to profit
by selling his software or patches, but only so long as JRH himself
could also potentially do so.

Another has to do with unintended consequences. Hackers have
observed that licenses that include restrictions on and fees for
commercial use or sale (the most common form of attempt to
recapture direct sale value, and not at first blush an unreasonable
one) have serious chilling effects. A specific one is to cast a legal
shadow on activities like redistribution in inexpensive CD-ROM
anthologies, which we would ideally like to encourage. More gen-
erally, restrictions on use/sale/modification/distribution (and other
complications in licensing) exact an overhead for conformance
tracking and (as the number of packages people deal with rises) a
combinatorial explosion of perceived uncertainty and potential
legal risk. This outcome is considered harmful, and there is there-
fore strong social pressure to keep licenses simple and free of
restrictions.

The final and most critical reason has to do with preserving the
peer-review, gift-culture dynamic described in Homesteading the
Noosphere. License restrictions designed to protect intellectual
property or capture direct sale value often have the effect of mak-
ing it legally impossible to fork the project. This is the case, for
example, with Sun’s so-called “Community Source” licenses for
Jini and Java. While forking is frowned upon and considered a last
resort (for reasons discussed at length in Homesteading the Noo-
sphere), it’s considered critically important that that last resort be

The Magic Cauldron

133

22 December 2000 18:26

The Cathedral and the Bazaar

present in case of maintainer incompetence or defection (e.g., to a
more closed license).4

The hacker community has some give on the symmetry reason;
thus, it tolerates licenses like the Netscape Public License (NPL)
that give some profit privileges to the originators of the code
(specifically in the NPL case, the exclusive right to use the open-
source Mozilla code in derivative products including closed
source). It has less give on the unintended-consequences reason,
and none at all on preserving the option to fork (which is why
Sun’s Java and Jini Sun Community Source License schemes have
been largely rejected by the community).

(It bears repeating here that nobody in the hacker community
wants projects to split into competing development lines; indeed,
as I observed in Homesteading the Noosphere, there is very strong
social pressure against forking, for good reasons. Nobody wants
to be on a picket line, in court, or in a firefight either. But the right
to fork is like the right to strike, the right to sue, or the right to
bear arms—you don’t want to have to exercise any of these rights,
but it’s a signal of serious danger when anyone tries to take them
away.)

These reasons explain the clauses of the Open Source Definition,
which was written to express the consensus of the hacker commu-
nity regarding the critical features of the standard licenses (the
GPL, the BSD license, the MIT License, and the Artistic License).
These clauses have the effect (though not the intention) of making
direct sale value very hard to capture.

Indirect Sale-Value Models

Nevertheless, there are ways to make markets in software-related
services that capture something like indirect sale value. There are
five known and two speculative models of this kind (more may be
developed in the future).

134

22 December 2000 18:26

Loss-Leader/Market Positioner

In this model, you use open-source software to create or maintain
a market position for proprietary software that generates a direct
revenue stream. In the most common variant, open-source client
software enables sales of server software, or subscription/advertis-
ing revenue associated with a portal site.

Netscape Communications, Inc. was pursuing this strategy when it
open-sourced the Mozilla browser in early 1998. The browser side
of their business was at 13% of revenues and dropping when
Microsoft first shipped Internet Explorer (IE). Intensive marketing
of IE (and shady bundling practices that would later become the
central issue of an antitrust lawsuit) quickly ate into Netscape’s
browser market share, creating concern that Microsoft intended to
monopolize the browser market and then use defacto control of
HTML and HTTP to drive Netscape out of the server market.

By open-sourcing the still widely popular Netscape browser,
Netscape effectively denied Microsoft the possibility of a browser
monopoly. They expected that open-source collaboration would
accelerate the development and debugging of the browser, and
hoped that Microsoft’s IE would be reduced to playing catch-up
and prevented from exclusively defining HTML.

This strategy worked. In November 1998 Netscape actually began
to regain business-market share from IE. By the time Netscape
was acquired by AOL in early 1999, the competitive advantage of
keeping Mozilla in play was sufficiently clear that one of AOL’s
first public commitments was to continue supporting the Mozilla
project, even though it was still in alpha stage.

Widget Frosting

This model is for hardware manufacturers (hardware, in this con-
text, includes anything from Ethernet or other peripheral boards
all the way up to entire computer systems). Market pressures have
forced hardware companies to write and maintain software (from
device drivers through configuration tools all the way up to the

The Magic Cauldron

135

22 December 2000 18:26

The Cathedral and the Bazaar

level of entire operating systems), but the software itself is not a
profit center. It’s an overhead — often a substantial one.

In this situation, opening source is a no-brainer. There’s no rev-
enue stream to lose, so there’s no downside. What the vendor
gains is a dramatically larger developer pool, more rapid and flexi-
ble response to customer needs, and better reliability through peer
review. It gets ports to other environments for free. It probably
also gains increased customer loyalty as its customers’ technical
staffs put increasing amounts of time into the code to improve the
source as they require.

There are a couple of vendor objections commonly raised specifi-
cally to open-sourcing hardware drivers. Rather than mix these
objections with discussion of more general issues here, I have writ-
ten specifically on this topic (see the section “Afterword: Why
Closing a Drivers Loses Its Vendor Money”).

The ‘future-proofing’ effect of open source is particularly strong
with respect to widget frosting. Hardware products have a finite
production and support lifetime; after that, the customers are on
their own. But if they have access to driver source and can patch
those drivers as needed, they’re more likely to be happier repeat
customers.

A very dramatic example of adopting the widget frosting model
was Apple Computer’s decision in mid-March 1999 to open-
source “Darwin”, the core of their Mac OS X server operating
system.

Give Awa y the Recipe, Open a Restaurant

In this model, one open-sources software to create a market posi-
tion not for closed software (as in the loss-leader/market-posi-
tioner case) but for services.

(I used to call this “Give Away the Razor, Sell Razor Blades”, but
the coupling is not really as close as the razor/razor-blade analogy
implies.)

136

22 December 2000 18:26

This model was first used by Cygnus Solutions, arguably the first
open-source business (1989). At the time, the GNU tools provided
a common development environment across several machines, but
each tool used a different configuration process and required a dif-
ferent set of patches to run on each platform. Cygnus domesti-
cated the GNU tools and created the “configure” script to unify
the build process (the recipe), and then sold support services and
binaries bundled with their version of the GNU tools (the restau-
rant). In accordance with the GPL, they permitted customers to
freely use, distribute, and modify the software that they dis-
tributed, but the service contract could be terminated (or a higher
fee had to be paid) if there were more users at the site using the
support services than were accounted for in the contract (no shar-
ing at the salad bar).

This also is what Red Hat and other Linux distributors do. What
they are actually selling is not the software, the bits itself, but the
value added by assembling and testing a running operating system
that is warranted (if only implicitly) to be merchantable and to be
plug-compatible with other operating systems carrying the same
brand. Other elements of their value proposition include free
installation support and the provision of options for continuing
support contracts.

The market-building effect of open source can be extremely pow-
erful, especially for companies that are inevitably in a service posi-
tion to begin with. One very instructive recent case is Digital
Creations, a website-design house started up in 1998 that special-
izes in complex database and transaction sites. Their major tool,
the intellectual-property crown jewels of the company, is an object
publisher that has been through several names and incarnations
but is now called Zope.

When the Digital Creations people went looking for venture capi-
tal, the venture capitalist they brought in carefully evaluated their
prospective market niche, their people, and their tools. The VC
then recommended that Digital Creations take Zope open-source.

The Magic Cauldron

137

22 December 2000 18:26

The Cathedral and the Bazaar

By traditional software industry standards, this looks like an abso-
lutely crazy move. Conventional business school wisdom has it
that core intellectual property like Zope is a company’s crown
jewels, never under any circumstances to be given away. But the
VC had two related insights. One is that Zope’s true core asset is
actually the brains and skills of its people. The second is that Zope
is likely to generate more value as a market-builder than as a
secret tool.

To see this, compare two scenarios. In the conventional one, Zope
remains Digital Creations’s secret weapon. Let’s stipulate that it’s a
very effective one. As a result, the firm will be able to deliver supe-
rior quality on short schedules—but nobody knows that. It will be
easy to satisfy customers, but harder to build a customer base to
begin with.

The VC, instead, saw that open-sourcing Zope could be critical
advertising for Digital Creations’s real asset — its people. He
expected that customers evaluating Zope would consider it more
efficient to hire the experts than to develop in-house Zope
expertise.

One of the Zope principals has since confirmed very publicly that
their open-source strategy has “opened many doors we wouldn’t
have got in otherwise” [sic]. Potential customers do indeed
respond to the logic of the situation—and Digital Creations,
accordingly, is prospering.

Another up-to-the-minute example is e-smith, inc. (http://www.e-
smith.net/). This company sells support contracts for turnkey
Internet server software that is open-source, a customized Linux.
One of the principals, describing the spread of free downloads of
e-smith’s software, says ‘‘Most companies would consider that
software piracy; we consider it free marketing’’ (http://www.glo-
betechnology.com/gam/News/19990625/BAND.html).

138

22 December 2000 18:26

Accessorizing

In this model, you sell accessories for open-source software. At the
low end, mugs and T-shirts; at the high end, professionally edited
and produced documentation.

O’Reilly & Associates, Inc., publishers of many excellent reference
volumes on open-source software, is a good example of an acces-
sorizing company. O’Reilly actually hires and supports well-
known open-source hackers (such as Larry Wall and Brian
Behlendorf) as a way of building its reputation in its chosen
market.

Free the Future, Sell the Present

In this model, you release software in binaries and source with a
closed license, but one that includes an expiration date on the clo-
sure provisions. For example, you might write a license that per-
mits free redistribution, forbids commercial use without fee, and
guarantees that the software come under GPL terms a year after
release or if the vendor folds.

Under this model, customers can ensure that the product is cus-
tomizable to their needs, because they have the source. The prod-
uct is future-proofed—the license guarantees that an open source
community can take over the product if the original company dies.

Because the sale price and volume are based on these customer
expectations, the original company should enjoy enhanced rev-
enues from its product versus releasing it with an exclusively
closed-source license. Furthermore, as older code is GPLed, it will
get serious peer review, bug fixes, and minor features, which
removes some of the 75% maintainance burden on the originator.

This model has been successfully pursued by Aladdin Enterprises,
makers of the popular Ghostscript program (a PostScript inter-
preter that can translate to the native languages of many printers).

The Magic Cauldron

139

22 December 2000 18:26

The Cathedral and the Bazaar

The main drawback of this model is that the closure provisions
tend to inhibit peer review and participation early in the product
cycle, precisely when they are needed most.

Free the Software, Sell the Brand

This is a speculative business model. You open-source a software
technology, retain a test suite or set of compatibility criteria, then
sell users a brand certifying that their implementation of the tech-
nology is compatible with all others wearing the brand.

(This is how Sun Microsystems ought to be handling Java and
Jini.)

Update: In July 2000, Sun announced that it would open-source
its Star Office, and that they would be selling the use of the Star
Office brand to lines of development of that codebase that pass
Sun’s validation suite.

Free the Software, Sell the Content

This is another speculative business model. Imagine something like
a stock-ticker subscription service. The value is neither in the
client software nor the server but in providing objectively reliable
information. So you open-source all the software and sell sub-
scriptions to the content. As hackers port the client to new plat-
forms and enhance it in various ways, your market automatically
expands.

(This is why AOL ought to open-source its client software.)

When to Be Open, When
to Be Closed

Having reviewed business models that support open-source soft-
ware development, we can now approach the general question of
when it makes economic sense to be open-source and when to be
closed-source. First, we must be clear what the payoffs are from
each strategy.

140

22 December 2000 18:26

What Are the Payoffs?

The closed-source approach allows you to collect rent from your
secret bits; on the other hand, it forecloses the possibility of truly
independent peer review. The open-source approach sets up condi-
tions for independent peer review, but you don’t get rent from
your secret bits.

The payoff from having secret bits is well understood; tradition-
ally, software business models have been constructed around it.
Until recently, the payoff from independent peer review was not
well understood. The Linux operating system, however, drives
home a lesson that we should probably have learned years ago
from the history of the Internet’s core software and other branches
of engineering—that open-source peer review is the only scalable
method for achieving high reliability and quality.

In a competitive market, therefore, customers seeking high relia-
bility and quality will reward software producers who go open-
source and discover how to maintain a revenue stream in the
service, value-add, and ancilliary markets associated with soft-
ware. This phenomenon is what’s behind the astonishing success
of Linux, which came from nowhere in 1996 to be the second-
most-popular operating system in the business server market by
mid-2000 (and some surveys actually showed it passing
Microsoft’s share in late 2000). In early 1999 IDC projected that
Linux would grow faster than all other operating systems com-
bined through 2003; this projection has held true so far.

An almost equally important payoff of open source is its utility as
a way to propagate open standards and build markets around
them. The dramatic growth of the Internet owes much to the fact
that nobody owns TCP/IP; nobody has a proprietary lock on the
core Internet protocols.

The network effects behind TCP/IP’s and Linux’s success are fairly
clear and reduce ultimately to issues of trust and symmetry—
potential parties to a shared infrastructure can rationally trust it
more if they can see how it works all the way down, and will

The Magic Cauldron

141

22 December 2000 18:26

The Cathedral and the Bazaar

prefer an infrastructure in which all parties have symmetrical
rights to one in which a single party is in a privileged position to
extract rents or exert control.

It is not, however, actually necessary to assume network effects in
order for symmetry issues to be important to software consumers.
No software consumer will rationally choose to lock itself into a
supplier-controlled monopoly by becoming dependent on closed
source if any open-source alternative of acceptable quality is avail-
able. This argument gains force as the software becomes more
critical to the software consumer’s business — the more vital it is,
the less the consumer can tolerate having it controlled by an out-
side party.

There’s a flip side to this. Economists know that, in general, asym-
metric information makes markets work poorly. Higher-quality
goods get driven out when it’s more lucrative to collect rent on
privileged information than it is to invest in producing better
products. In general, not just in software, secrecy is the enemy of
quality.

Finally, an important customer payoff of open-source software
related to the trust issue is that it’s future-proof. If sources are
open, the customer has some recourse if the vendor goes belly-up.
This may be particularly important for widget frosting, since hard-
ware tends to have short life cycles, but the effect is more general
and translates into increased value for all kinds of open-source
software.

How Do They Interact?

When the rent from secret bits is higher than the return from open
source, it makes economic sense to be closed-source. When the
return from open source is higher than the rent from secret bits, it
makes sense to go open source.

In itself, this is a trivial observation. It becomes nontrivial when
we notice that the payoff from open source is harder to measure
and predict than the rent from secret bits—and that said payoff is

142

22 December 2000 18:26

grossly underestimated much more often than it is overestimated.
Indeed, until the mainstream business world began to rethink its
premises following the Mozilla source release in early 1998, the
open-source payoff was incorrectly but very generally assumed to
be zero.

So how can we evaluate the payoff from open source? It’s a diffi-
cult question in general, but we can approach it as we would any
other predictive problem. We can start from observed cases where
the open-source approach has succeeded or failed. We can try to
generalize to a model that gives at least a qualitative feel for the
contexts in which open source is a net win for the investor or busi-
ness trying to maximize returns. We can then go back to the data
and try to refine the model.

From the analysis presented in The Cathedral and the Bazaar, we
can expect that open source has a high payoff where (a) reliability/
stability/scalability are critical, and (b) correctness of design and
implementation is not readily verified by means other than inde-
pendent peer review. (The second criterion is met in practice by
most non-trivial programs.)

A consumer’s rational desire to avoid being locked into a
monopoly supplier will increase its interest in open source (and,
hence, the competitive-market value for suppliers of going open)
as the software becomes more critical to that consumer. Thus,
another criterion (c) pushes towards open source when the soft-
ware is a business-critical capital good (as, for example, in many
corporate MIS departments).

As for application area, we observed above that open-source
infrastructure creates trust and symmetry effects that, over time,
will tend to attract more customers and to outcompete closed-
source infrastructure; and it is often better to have a smaller piece
of such a rapidly-expanding market than a bigger piece of a closed

The Magic Cauldron

143

22 December 2000 18:26

The Cathedral and the Bazaar

and stagnant one. Accordingly, for infrastructure software, an
open-source play for ubiquity is quite likely to have a higher long-
term payoff than a closed-source play for rent from intellectual
property.

In fact, the ability of potential customers to reason about the
future consequences of vendor strategies and their reluctance to
accept a supplier monopoly implies a stronger constraint; without
already having overwhelming market power, you can choose
either an open-source ubiquity play or a direct-revenue-from-
closed-source play—but not both. (Analogues of this principle are
visible elsewhere—e.g., in electronics markets where customers
often refuse to buy sole-source designs.) The case can be put less
negatively: where network effects (positive network externalities)
dominate, open source is likely to be the right thing.

We may sum up this logic by observing that open source seems to
be most successful in generating greater returns than is closed
source in software that (d) establishes or enables a common com-
puting and communications infrastructure.

Finally, we may note that purveyors of unique or just highly differ-
entiated services have more incentive to fear the copying of their
methods by competitors than do vendors of services for which the
critical algorithms and knowledge bases are well understood.
Accordingly, open source is more likely to dominate when (e) key
methods (or functional equivalents) are part of common engineer-
ing knowledge.

The Internet core software, Apache, and Linux’s implementation
of the standard Unix API are prime exemplars of all five criteria.
The path towards open source in the evolution of such markets
are well-illustrated by the reconvergence of data networking on
TCP/IP in the mid-1990s following 15 years of failed attempts at
empire-building with closed protocols such as DECNET, XNS,
IPX, and the like.

144

22 December 2000 18:26

On the other hand, open source seems to make the least sense for
companies that have unique possession of a value-generating soft-
ware technology (strongly fulfilling criterion (e)), which is (a) rela-
tively insensitive to failure, which can (b) readily be verified by
means other than independent peer review, which is not (c) busi-
ness-critical, and which would not have its value substantially
increased by (d) network effects or ubiquity.

As an example of this extreme case, in early 1999 I was asked
“Should we go open source?” by a company that writes software
to calculate cutting patterns for sawmills that want to extract the
maximum yardage of planks from logs. My conclusion was ‘‘No.’’
The only criterion this comes even close to fulfilling is (c); but in a
pinch, an experienced operator could generate cut patterns by
hand.

Note that my answer night have been very different if the cut-pat-
tern calculator had been written by a sawmill-equipment manufac-
turer. In that case, opening the code would have increased the
value of the associated hardware they were selling. Also note that
if some open-source cut-pattern calculator already existed (per-
haps the one written by the sawmill-equipment manufacturer) the
closed-source product would have trouble competing with it—not
so much for reasons of price, but because customers would per-
ceive on open-source advantage in customizability and other
traits.

An important point is that where a particular product or technol-
ogy sits on these scales may change over time, as we’ll see in the
following case study.

The Magic Cauldron

145

22 December 2000 18:26

The Cathedral and the Bazaar

In summary, the following discriminators push towards open
source:

1. Reliability/stability/scalability are critical.

2. Correctness of design and implementation cannot readily be
verified by means other than independent peer review.

3. The software is critical to the user’s control of his/her busi-
ness.

4. The software establishes or enables a common computing and
communications infrastructure.

5. Key methods (or functional equivalents of them) are part of
common engineering knowledge.

Doom: A Case Study

The history of id software’s best-selling game Doom illustrates
ways in which market pressure and product evolution can criti-
cally change the payoff magnitudes for closed versus open source.

When Doom was first released in late 1993, its first-person, real-
time animation made it utterly unique (the antithesis of criterion
(e)). Not only was the visual impact of the techniques stunning
(far exceeding the flat-world animation in its predecessor Wolfen-
stein 3D), but for many months nobody could figure out how it
had been achieved on the underpowered microprocessors of that
time. These secret bits were worth some very serious rent. In addi-
tion, the potential payoff from open source was low. As a solo
game, the software (a) incurred tolerably low costs on failure, (b)
was not tremendously hard to verify, (c) was not business-critical
for any consumer, and (d) did not benefit from network effects. It
was economically rational for Doom to be closed source.

However, the market around Doom did not stand still. Would-be
competitors invented functional equivalents of its animation tech-
niques, and other ‘‘first-person shooter’’ games like Duke Nukem
began to appear. As these games ate into Doom’s market share,
the value of the rent from secret bits went down.

146

22 December 2000 18:26

On the other hand, efforts to expand that share brought on new
technical challenges—better reliability, more game features, a
larger user base, and multiple platforms. With the advent of multi-
player “deathmatch” play and Doom gaming services, the market
began to display substantial network effects. All this was demand-
ing programmer-hours that id would have preferred to spend on
the next game.

From the time the game was first released, id had looked benignly
on the publication of technical specs that helped people to create
data objects for the game, and occasionally cooperated directly
with hackers by answering specific questions or publishing an
existing specs document of their own. They also encouraged the
Internet distribution of new Doom data.

The technical and market trends raised the payoff from opening
the source; Doom’s opening of specifications and encouragement
of third-party add-ons increased the perceived value of the game
and created a secondary market for them to exploit. At some
point the payoff curves crossed over and it became economically
rational for id to shift to making money in that secondary market
(with products such as game-scenario anthologies) and then open
up the Doom source. Sometime after this point, it actually hap-
pened. The full source for Doom was released in late 1997.

Knowing When to Let Go

Doom makes an interesting case study because it is neither an
operating system nor communications/networking software; it is
thus far removed from the usual and obvious examples of open-
source success. Indeed, Doom’s life cycle, complete with crossover
point, may be coming to typify that of applications software in
today’s code ecology—one in which communications and dis-
tributed computation both create serious robustness/reliability/
scalability problems only addressible by peer review, and fre-
quently cross boundaries both between technical environments
and between competing actors (with all the trust and symmetry
issues that implies).

The Magic Cauldron

147

22 December 2000 18:26

The Cathedral and the Bazaar

Doom evolved from solo to deathmatch play. Increasingly, the
network effect is the computation. Similar trends are visible even
in the heaviest business applications, such as ERP systems, as busi-
nesses network ever more intensively with suppliers and cus-
tomers — and, of course, they are implicit in the whole architecture
of the World Wide Web. It follows that almost everywhere, the
open-source payoff is steadily increasing.

If present trends continue, the central challenge of software tech-
nology and product management in the next century will be
knowing when to let go—when to allow closed code to pass into
the open-source infrastructure in order to exploit the peer-review
effect and capture higher returns in service and other secondary
markets.

There are obvious revenue incentives not to miss the crossover
point too far in either direction. Beyond that, there’s a serious
opportunity risk in waiting too long—you could get scooped by a
competitor going open-source in the same market niche.

The reason this is a serious issue is that both the pool of users and
the pool of talent available to be recruited into open-source coop-
eration for any given product category is limited, and recruitment
tends to stick. If two producers are the first and second to open-
source competing code of roughly equal function, the first is likely
to attract the most users and the most and best-motivated co-
developers; the second will have to take leavings. Recruitment
tends to stick, as users gain familiarity and developers sink time
investments in the code itself.

Open Source as a Strategic Weapon

Sometimes, open-sourcing can be effective not just as a way to
grow markets but as a strategic maneuver against a company’s
competition. It will be fruitful to re-examine some of the business
tactics described above from that angle; not directly as revenue
generators but as ways to break into and reshape markets.

148

22 December 2000 18:26

Cost-sharing as a Competitive Weapon

Earlier, we considered Apache as an example of better and cheaper
infrastructure development through cost-sharing in an open-
source project. For software and systems vendors competing
against Microsoft and its IIS web server, the Apache project is also
a competitive weapon. It would be difficult, perhaps impossible,
for any other single web server vendor to completely offset the
advantages of Microsoft’s huge war chest and desktop-monopoly
market power. But Apache enables each corporate participant in
the project to offer a web server that is both technically superior
to IIS and reassures customers with a majority market share—at
far lower cost. This improves the market position and cost of pro-
duction for value-added electronic-commerce products (like IBM’s
WebSphere).

This generalizes. Open, shared infrastructure gives its participants
competitive advantages. One is lower cost per participant to pro-
duce salable products and services. Another is a market position
that reassures customers that they are much less likely to be stuck
with orphaned technology as a result of one vendor’s change in
strategy or tactics.

Resetting the Competition

When the development of the open-source X window system was
funded by DEC in the 1980s, their explicit goal was to “reset the
competition”. At the time there were several competing alternative
graphics environments for Unix in play, notably including Sun
Microsystems’ NeWS system. DEC strategists believed (probably
correctly) that if Sun were able to establish a proprietary graphics
standard it would get a lock on the booming Unix-workstation
market. By funding X and lending it engineers, and by allying with
many smaller vendors to establish X as a defacto standard, DEC
was able to neutralize advantages held by Sun and other competi-
tors with more in-house expertise in graphics. This moved the
focus of competition in the workstation market towards hard-
ware, where DEC was historically strong.

The Magic Cauldron

149

22 December 2000 18:26

The Cathedral and the Bazaar

This too generalizes. Open source is attractive to smart customers,
and to potential allies not large enough to fund competive devel-
opment on their own. An open-source project, pitched at the right
time, can do better than just competing successfully against
closed-source alternatives; it can actually prevent them from get-
ting traction in the marketplace, resetting the competition and
redirecting it from an area where the initiating company is weak
to one where it is strong.

Growing the Pond

Red Hat Software funded the development of the RPM packaging
system in order to give the Linux world a standard binary package
installer. By doing so, they bet that the increased confidence such a
standard installer would give potential customers would be worth
more in future revenue than either the development cost of the
software or the revenue potentially lost to competitors also able to
use it.

Sometimes the smartest way to become a bigger frog is to make
the pond grow faster. This, of course, is the economic reason tech-
nology firms have participated in public standards—and it’s useful
to think of open-source software as an executable standard.
Besides being an excellent market builder, this strategy can be a
direct competitive weapon when a small company uses it to offset
the mass and market power of a much larger company outside the
standards-based alliance. In Red Hat’s case, the obvious and
acknowledged big competitor is Microsoft; standardization on
RPM across most Linux distributions went a significant way
towards neutralizing advantages Microsoft had previously held in
ease of system administration on its Windows machines.

Preventing a Chokehold

In explaining the previous loss-leader/market-positioner business
model, I described how Netscape’s open-sourcing of the Mozilla

150

22 December 2000 18:26

browser was a (successful) maneuver aimed at preventing
Microsoft from effectively locking up HTML markup and the
HTTP protocol.

Often, it’s more important to prevent your competition from get-
ting a chokehold on a particular technology than it is to control
the technology yourself. By open-sourcing, you greatly increase
the potential size of your blocking coalition.

Open Source and Strategic
Business Risk

Ultimately, the reasons open source seems destined to become a
widespread practice have more to do with customer demand and
market pressures than with supply-side efficiencies for vendors. I
have already discussed, from the vendor’s point of view, the effects
of customer demand for reliability and for infrastructure with no
single dominant player, and how these have played out historically
in the evolution of networking. There is more to be said, though,
about the behavior of customers in a market where open source is
a factor.

Put yourself for the moment in the position of a CTO at a Fortune
500 corporation contemplating a build or upgrade of your firm’s
IT infrastructure. Perhaps you need to choose a network operating
system to be deployed enterprise-wide; perhaps your concerns
involve 24/7 web service and e-commerce; perhaps your business
depends on being able to field high-volume, high-reliability trans-
action databases.

Suppose you go the conventional closed-source route. If you do,
then you put your firm at the mercy of a supplier monopoly—
because by definition, there is only one place you can go for sup-
port, bug fixes, and enhancements. If the supplier doesn’t perform,
you will have no effective recourse because you are effectively
locked in by your initial investment and training costs. Your sup-

The Magic Cauldron

151

22 December 2000 18:26

The Cathedral and the Bazaar

plier knows this. Under these circumstances, do you suppose the
software will change to meet your needs and your business
plan . . . or your supplier’s needs and your supplier’s business plan?

The brutal truth is this: when your key business processes are exe-
cuted by opaque blocks of bits that you can’t even see inside (let
alone modify), you have lost control of your business. You need
your supplier more than your supplier needs you—and you will
pay, and pay, and pay again for that power imbalance. You’ll pay
in higher prices, you’ll pay in lost opportunities, and you’ll pay in
lock-in that grows worse over time as the supplier (who has
refined its game on a lot of previous victims) tightens its hold.

Contrast this with the open-source choice. If you go that route,
you have the source code, and no one can take it away from you.
Instead of a supplier monopoly with a chokehold on your busi-
ness, you now have multiple service companies bidding for your
business — and you not only get to play them against each other,
you have the option of building your own captive support organi-
zation if that looks less expensive than contracting out. The
market works for you.

The logic is compelling; depending on closed-source code is an
unacceptable strategic business risk. So much so that I believe it
will not be very long until closed-source single-vendor acquisitions
when there is an open-source alternative available will be viewed
as actual fiduciary irresponsibility, and rightly grounds for a share-
holder lawsuit.

The Business Ecology
of Open Source

The open-source community has organized itself in a way that
tends to amplify the productivity effects of open source. In the
Linux world, in particular, it’s an economically significant fact that
there are multiple competing Linux distributors that form a tier
separate from the developers.

152

22 December 2000 18:26

Developers write code, and make the code available over the Inter-
net. Each distributor selects some subset of the available code,
integrates and packages and brands it, and sells it to customers.
Users choose among distributions, and may supplement a distribu-
tion by downloading code directly from developer sites.

The effect of this tier separation is to create a very fluid internal
market for improvements. Developers compete with each other,
for the attention of distributors and users, on the quality of their
software. Distributors compete for user dollars on the appropri-
ateness of their selection policies, and on the value they can add to
the software.

A first-order effect of this internal market structure is that no node
in the net is indispensible. Developers can drop out; even if their
portion of the code base is not picked up directly by some other
developer, the competition for attention will tend to rapidly gener-
ate functional alternatives. Distributors can fail without damaging
or compromising the common open-source code base. The ecology
as a whole has a more rapid response to market demands, and
more capability to resist shocks and regenerate itself, than any
monolithic vendor of a closed-source operating system can possi-
bly muster.

Another important effect is to lower overhead and increase effi-
ciency through specialization. Developers don’t experience the
pressures that routinely compromise conventional closed projects
and turn them into tar-pits — no lists of pointless and distracting
check-list features from Marketing, no management mandates to
use inappropriate and outdated languages or development envi-
ronments, no requirement to reinvent wheels in a new and incom-
patible way in the name of product differentiation or intellectual-
property protection, and (most importantly) no deadlines. No
rushing a 1.0 out the door before it’s done right. De Marco and
Lister observed in their discussion of the “wake me when it’s

The Magic Cauldron

153

22 December 2000 18:26

The Cathedral and the Bazaar

over” management style in ‘‘Peopleware: Productive Projects and
Teams’’5 that this generally conduces not only to higher quality
but actually to the most rapid delivery of a working result.

Distributors, on the other hand, get to specialize in the things dis-
tributors can do most effectively. Freed of the need to fund mas-
sive and ongoing software development just to stay competitive,
they can concentrate on system integration, packaging, quality
assurance, and service.

Both distributors and developers are kept honest by the constant
feedback from and monitoring by users that is an integral part of
the open-source method.

Coping with Success

The “Tragedy of the Commons” may not be applicable to open-
source development as it happens today, but that doesn’t mean
there are not any reasons to wonder if the present momentum of
the open-source community is sustainable. Will key players defect
from cooperation as the stakes become higher?

There are several levels on which this question can be asked. Our
“Comedy of the Commons” counter-story is based on the argu-
ment that the value of individual contributions to open source is
hard to monetize. But this argument has much less force for firms
(like, say, Linux distributors) that already have a revenue stream
associated with open source. Their contribution is already being
monetized every day. Is their present cooperative role stable?

Examining this question will lead us to some interesting insights
about the economics of open-source software in the real world of
present time—and about what a true service-industry paradigm
implies for the software industry in the future.

On the practical level, applied to the open-source community as it
exists now, this question is usually posed in one of two different
ways. One: will Linux fragment? Two: conversely, will Linux
develop a dominant, quasi-monopolistic player?

154

22 December 2000 18:26

The historical analogy many people turn to when considering if
Linux will fragment is the behavior of the proprietary-Unix ven-
dors in the 1980s. Despite endless talk of open standards, despite
numerous alliances and consortia and agreements, proprietary
Unix fell apart. The vendors’ desire to differentiate their products
by adding and modifying operating-system facilities proved
stronger than their interest in growing the total size of the Unix
market by maintaining compatibility (and consequently lowering
both entry barriers for independent software developers and total
cost of ownership for consumers).

This is quite unlikely to happen to Linux, for the simple reason
that all the distributors are constrained to operate from a common
base of open source code. It’s not really possible for any one of
them to maintain differentiation, because the licenses under which
Linux code are developed effectively require them to share code
with all parties. The moment any distributor develops a feature,
all competitors are free to clone it.

Since all parties understand this, nobody even thinks about doing
the kinds of maneuvers that fragmented proprietary Unix. Instead,
Linux distributors are forced to compete in ways that actually
benefit the consumer and the overall market. That is, they must
compete on service, on support, and their design bets on what
interfaces actually conduce to ease installation and use.

The common source base also forecloses the possibility of monop-
olization. When Linux people worry about this, the name usually
muttered is ‘‘Red Hat’’, that of the largest and most successful of
the distributors (with somewhere around 90% estimated market
share in the U.S.). But it is notable that within days after the May
1999 announcement of Red Hat’s long-awaited 6.0 release—
before Red Hat’s CD-ROMs actually shipped in any quantity—
CD-ROM images of the release built from Red Hat’s own public
FTP site were being advertised by a book publisher and several
other CD-ROM distributors at lower prices than Red Hat’s
expected list price.

The Magic Cauldron

155

22 December 2000 18:26

The Cathedral and the Bazaar

Red Hat itself didn’t turn a hair at this, because its founders
understand very clearly that they do not and cannot own the bits
in their product; the social norms of the Linux community forbid
that. In a latter-day take on John Gilmore’s famous observation
that the Internet interprets censorship as damage and routes
around it, it has been aptly said that the hacker community
responsible for Linux interprets attempts at control as damage and
routes around them. For Red Hat to have protested the pre-release
cloning of its newest product would have seriously compromised
its ability to elicit future cooperation from its developer com-
munity.

Perhaps more importantly in present time, the software licenses
that express these community norms in a binding legal form
actively forbid Red Hat from monopolizing the sources of the
code on which their product is based. The only thing they can sell
is a brand/service/support relationship with people who are freely
willing to pay for that. This is not a context in which the possibil-
ity of a predatory monopoly looms very large.

Open R&D and the Reinvention
of Patronage

There is one other respect in which the infusion of real money into
the open-source world is changing it. The community’s stars are
increasingly finding they can get paid for what they want to do,
instead of pursuing open source as a hobby funded by another day
job. Corporations like Red Hat, O’Reilly & Associates, and VA
Linux Systems are building what amount to semi-independent
research arms with charters to hire and maintain stables of open-
source talent.

This makes economic sense only if the cost per head of maintain-
ing such a lab can easily be paid out of the expected gains it will
achieve by growing the firm’s market faster. O’Reilly can afford to
pay the leaders of Perl and Apache to do their thing because it
expects their efforts will enable it to sell more Perl- and Apache-

156

22 December 2000 18:26

related books and draw more people to its conferences. VA Linux
Systems can fund its laboratory branch because improving Linux
boosts the use value of the workstations and servers it sells. And
Red Hat funds Red Hat Advanced Development Labs to increase
the value of its Linux offering and attract more customers.

To strategists from more traditional sectors of the software
industry, reared in cultures that regard patent- or trade-secret–pro-
tected intellectual property as the corporate crown jewels, this
behavior may (despite its market-growing effect) seem inexplica-
ble. Why fund research that every one of your competitors is (by
definition) free to appropriate at no cost?

There seem to be two controlling reasons. One is that as long as
these companies remain dominant players in their market niches,
they can expect to capture a proportional lion’s share of the
returns from the open research and development. Using R&D to
buy future profits is hardly a novel idea; what’s interesting is the
implied calculation that the expected future gains are sufficiently
large that these companies can readily tolerate free riders in order
to get the peer-review effect.

While this obvious expected-future–value analysis is a necessary
one in a world of hard-nosed capitalists keeping their eyes on
return-on-investment, it is not actually the most interesting mode
of explanation for star-hiring, because the firms themselves
advance a fuzzier one. They will tell you if asked that they are
simply doing the right thing by the community they come from.
Your humble author is sufficiently well-acquainted with principals
at all three of the firms cited above to testify that these protesta-
tions cannot be dismissed as humbug. Indeed, I was personally
recruited onto the board of VA Linux Systems in late 1998 explic-
itly so that I would be available to advise them on ‘‘the right
thing’’, and have found them far from unwilling to listen when I
did so.

An economist is entitled to ask what payoff is involved here. If we
accept that talk of doing the right thing is not empty posturing, we

The Magic Cauldron

157

22 December 2000 18:26

The Cathedral and the Bazaar

should next inquire what self-interest of the firm the ‘‘right thing’’
serves. Nor is the answer, in itself, either surprising or difficult to
verify by asking the right questions. As with superficially altruistic
behavior in other industries, what these firms actually believe
they’re buying is goodwill.

Working to earn goodwill, and valuing it as an asset predictive of
future market gains, is hardly novel either. What’s interesting is
the extremely high valuation that the behavior of these firms sug-
gests they put on that goodwill. They’re demonstrably willing to
hire expensive talent for projects that are not direct revenue gener-
ators even during the most capital-hungry phases of the runup to
IPO. And, at least so far, the market has richly rewarded this
behavior.

The principals of these companies themselves are quite clear about
the reasons why goodwill is especially valuable to them. They rely
heavily on volunteers among their customer base both for product
development and as an informal marketing arm. Their relation-
ship with their customer base is intimate, often relying on personal
trust bonds between individuals within and outside the firm. They
do not merely use the hacker community; they identify with it.

These observations reinforce a lesson we learned earlier from a
different line of reasoning. The intimate relationship between Red
Hat/VA/O’Reilly and their customers/developers is not one typical
of manufacturing firms. Rather, it carries to an interesting extreme
the patterns characteristic of highly professionalized and knowl-
edge-intensive service industries. Looking outside the technology
industry, we can see these patterns in (for example) law firms,
medical practices, and universities.

We may observe, in fact, that open-source firms hire star hackers
for much the same reasons that universities hire star academics. In
both cases, the practice is similar in mechanism and effect to the
system of aristocratic patronage that funded most fine art until
after the Industrial Revolution—a similarity of which some par-
ties are fully aware.

158

22 December 2000 18:26

Getting There from Here

The market mechanisms for funding (and making a profit from!)
open-source development are still evolving rapidly. The business
models we’ve reviewed in this essay probably will not be the last
to be invented. Investors are still thinking through the conse-
quences of reinventing the software industry as one with an
explicit focus on service rather than closed intellectual property,
and will be for some time to come.

This conceptual revolution will have some cost in foregone profits
for people investing in the sale-value 5% of the industry; histori-
cally, service businesses are not as lucrative as manufacturing busi-
nesses (though as any doctor or lawyer could tell you, the return
to the actual practitioners is often higher). Any foregone profits,
however, will be more than matched by benefits on the cost side,
as software consumers reap tremendous savings and efficiencies
from open-source products. (There’s a parallel here to the effects
that the displacement of the traditional voice-telephone network
by the Internet is having everywhere).

The promise of these savings and efficiencies is creating a market
opportunity that entrepreneurs and venture capitalists are now
moving in to exploit. As the first draft of this essay was in prepa-
ration, Silicon Valley’s most prestigious venture-capital firm took a
lead stake in the first startup company to specialize in 24/7 Linux
technical support (Linuxcare). In August 1999 Red Hat’s IPO was
(despite a background slump in Internet and technology stocks)
wildly successful. It is generally expected that several Linux- and
open-source–related IPOs will be floated before the end of 1999
—and that they too will be quite successful. (Year 2000 update:
they were!)

The Magic Cauldron

159

22 December 2000 18:26

The Cathedral and the Bazaar

Another very interesting development is the beginnings of system-
atic attempts to make task markets in open-source development
projects. SourceXchange (http://www.sourcexchange.com/process
.html) and CoSource (http://www.cosource.com/) represent
slightly different ways of trying to apply a reverse-auction model
to funding open-source development.

The overall trends are clear. We mentioned before IDC’s projection
that Linux will grow faster than all other operating systems com-
bined through 2003. Apache is at 61% market share and rising
steadily. Internet usage is exploding, and surveys such as the Inter-
net Operating System Counter (http://leb.net/hzo/ioscount/) show
that Linux and other open-source operating systems are already a
plurality on Internet hosts and steadily gaining share against
closed systems. The need to exploit open-source Internet infras-
tructure increasingly conditions not merely the design of other
software but the business practices and software use/purchase pat-
terns of every corporation there is. These trends, if anything, seem
likely to accelerate.

Conclusion: Life After
the Revolution

What will the world of software look like once the open-source
transition is complete?

Some programmers worry that the transition to open source will
abolish or devalue their jobs. The standard nightmare is what I
call the ‘‘Open-Source Doomsday’’ scenario. This starts with the
market value of software going to zero because of all the free
source code out there. Use value alone doesn’t attract enough con-
sumers to support software development. The commercial soft-
ware industry collapses. Programmers starve or leave the field.
Doomsday arrives when the open-source culture itself (dependent
on the spare time of all these pros) collapses, leaving nobody
around who can program competently. All die. Oh, the
embarrassment!

160

22 December 2000 18:26

We have already observed a number of sufficient reasons this
won’t happen, starting with the fact that most developers’ salaries
don’t depend on software sale value in the first place. But the very
best one, worth emphasizing here, is this: when did you last see a
software development group that didn’t have way more than
enough work waiting for it? In a swiftly changing world, in a
rapidly complexifying and information-centered economy, there
will always be plenty of work and a healthy demand for people
who can make computers do things—no matter how much time
and how many secrets they give away.

For purposes of examining the software market itself, it will be
helpful to sort kinds of software by how completely the service
they offer is describable by open technical standards, which is well
correlated with how commoditized the underlying service has
become.

This axis corresponds reasonably well to what people are nor-
mally thinking when they speak of ‘applications’ (not at all com-
moditized, weak or nonexistent open technical standards),
‘infrastructure’ (commoditized services, strong standards), and
‘middleware’ (partially commoditized, effective but incomplete
technical standards). The paradigm cases today in 2000 would be
a word processor (application), a TCP/IP stack (infrastructure),
and a database engine (middleware).

The payoff analysis we did earlier suggests that infrastructure,
applications, and middleware will be transformed in different
ways and exhibit different equilibrium mixes of open and closed
source. It also suggested the prevalence of open source in a partic-
ular software area would be a function of whether substantial
network effects operate there, what the costs of failure are, and to
what extent the software is a business-critical capital good.

The Magic Cauldron

161

22 December 2000 18:26

The Cathedral and the Bazaar

We can venture some predictions if we apply these heuristics not
to individual products but to entire segments of the software
market. Here we go:

Infrastructure (the Internet, the Web, operating systems, and the
lower levels of communications software that has to cross bound-
aries between competing parties) will be almost all open source,
cooperatively maintained by user consortia and by for-profit dis-
tribution/service outfits with a role like that of Red Hat today.

Applications, on the other hand, will have the most tendency to
remain closed. There will be circumstances under which the use
value of an undisclosed algorithm or technology will be high
enough (and the costs associated with unreliability will be low
enough, and the risks associated with a supplier monopoly suffi-
ciently tolerable) that consumers will continue to pay for closed
software. This is likeliest to remain true in standalone vertical-
market applications where network effects are weak. Our lumber-
mill example earlier is one such; biometric identification software
seems likeliest, of 1999’s hot prospects, to be another.

Middleware (like databases, development tools, or the customized
top ends of application protocol stacks) will be more mixed.
Whether middleware categories tend to go closed or open seems
likely to depend on the cost of failures, with higher cost creating
market pressure for more openness.

To complete the picture, however, we need to notice that neither
‘applications’ nor ‘middleware’ are really stable categories. Earlier
we saw that individual software technologies seem to go through a
natural life cycle from rationally closed to rationally open. The
same logic applies in the large.

Applications tend to fall into middleware as standardized tech-
niques develop and portions of the service are commoditized.
(Databases, for example, became middleware after SQL decoupled
frontends from engines.) As middleware services are commodi-
tized, they will in turn tend to fall into the open-source

162

22 December 2000 18:26

infrastructure — a transition we’re seeing in operating systems
right now.

In a future that includes competition from open source, we can
expect that the eventual destiny of any software technology will be
to either die or become part of the open infrastructure itself. While
this is hardly happy news for entrepreneurs who would like to col-
lect rent on closed software forever, it does suggest that the soft-
ware industry as a whole will remain entrepreneurial, with new
niches constantly opening up at the upper (application) end and a
limited lifespan for closed-IP monopolies as their product cate-
gories fall into infrastructure.

Finally, of course, this equilibrium will be great for the software
consumers who are driving the process. More and more high-qual-
ity software will become permanently available to use and build
on instead of being discontinued or locked in somebody’s vault.
Ceridwen’s magic cauldron is, finally, too weak a metaphor—
because food is consumed or decays, whereas software sources
potentially last forever. The free market, in its widest libertarian
sense including all un-coerced activity whether trade or gift, can
produce perpetually increasing software wealth for everyone.

Afterword: Why Closing a Drivers
Loses Its Vendor Money

Manufacturers of peripheral hardware (Ethernet cards, disk con-
trollers, video board and the like) have historically been reluctant
to open up. This is changing now, with players like Adaptec and
Cyclades beginning to routinely disclose specifications and driver
source code for their boards. Nevertheless, there is still resistance
out there. In this appendix I attempt to dispel several of the eco-
nomic misconceptions that sustain it.

If you are a hardware vendor, you may fear that open-sourcing
may reveal important things about how your hardware operates
that competitors could copy, thus gaining an unfair competitive
advantage. Back in the days of three- to five-year product cycles

The Magic Cauldron

163

22 December 2000 18:26

The Cathedral and the Bazaar

this was a valid argument. Today, the time your competitors’ engi-
neers would need to spend copying and understanding the copy is
a damagingly large portion of the product cycle, time they are not
spending innovating or differentiating their own product.

This is not a new insight. Former KGB chief Oleg Kalugin puts the
case well (http://cnn.com/SPECIALS/cold.war/experience/spies/
interviews/kalugin/):

For instance, when we stole IBMs in our blueprints, or
some other electronic areas which the West made great
strides in and we were behind, it would take years to
implement the results of our intelligence efforts. By that
time, in five or seven years, the West would go forward,
and we would have to steal again and again, and we’d fall
behind more and more.

But Rudyard Kipling put it better in his poem The Mary Gloster
(http://www.everypoet.com/archive/poetry/Rudyard_Kipling/
kipling_the_mary_gloster.htm), nearly a century ago. He wrote:

And they asked me how I did it,

and I gave ’em the Scripture text,

‘‘You keep your light so shining

a little in front o’ the next!’’

They copied all they could follow,

but they couldn’t copy my mind,

And I left ’em sweating and stealing

a year and a half behind.

Acceleration to Internet time makes this effect bite harder. If
you’re really ahead of the game, plagiarism is a trap you want
your competitors to fall into!

In any case, these details don’t stay hidden for long these days.
Hardware drivers are not like operating systems or applications;
they’re small, easy to disassemble, and easy to clone. Even teenage
novice programmers can do this—and frequently do.

164

22 December 2000 18:26

There are literally thousands of Linux and FreeBSD programmers
out there with both the capability and the motivation to build
drivers for a new board. For many classes of device that have rela-
tively simple interfaces and well-known standards (such as disk
controllers and network cards) these eager hackers can often pro-
totype a driver almost as rapidly your own shop could, even with-
out documentation and without disassembling an existing driver.

Even for tricky devices like video and sound cards, there is not
much you can do to thwart a clever programmer armed with a
disassembler. Costs are low and legal barriers are porous; Linux is
an international effort and there is always a jurisdiction in which
reverse-engineering will be legal.

For hard evidence that all these claims are true, examine the list of
devices supported in the Linux kernel and notice the rate at which
new ones are added to the kernel even without vendor support.

Another good reason to open your drivers is so that you can con-
centrate on innovation. Imagine no longer having to spend your
internal staff’s time and salaries on rewriting, testing, and dis-
tributing new binaries for each new kernel as it comes out. You
certainly have better things to do with all that skill.

Yet another good reason: nobody wants to wait six months for
bug fixes. If you have any open-source competition at all, they are
likely to bury you for this reason alone.

Of course, there’s the future-proofing effect previously referred to.
Customers want open source because they know it will extend the
lifetime of the hardware beyond the point that it is cost-effective
for you to support it.

The best reason, though, is because selling hardware is what
makes money for you. There is no market demand for your
secrecy; in fact, quite the reverse. If your drivers are hard to find,
if they have to be updated frequently, if they (worst of all) run
poorly, it reflects badly on your hardware and you will sell less of
it. Open source can solve these problems and boost your revenues.

The Magic Cauldron

165

22 December 2000 18:26

The Cathedral and the Bazaar

The message? Keeping your driver secret looks attractive in the
short run, but is probably bad strategy in the long run (certainly
when you’re competing with other vendors that are already open).
But if you must do it, burn the code into an onboard ROM. Then
publish the interface to the ROM. Go open as much as possible to
build your market and demonstrate to potential customers that
you believe in your capacity to out-think and out-innovate com-
petitors where it matters.

If you stay closed you will usually get the worst of all worlds—
your secrets will still get exposed, you won’t get free development
help, and you won’t have wasted your stupider competition’s time
on cloning. Most importantly, you miss an avenue to widespread
early adoption. A large and influential market (the people who
manage the servers that run effectively all of the Internet and a
plurality of all business data centers) will correctly write your
company off as clueless and defensive because you didn’t realize
these things. Then they’ll buy their boards from someone who did.

166

22 December 2000 18:26

Revenge of the Hackers

✦ ✦ ✦

The eruption of open-source software into the main-

stream in 1998 was the revenge of the hackers after 20

years of marginalization. I found myself semi-accidentally

cast as chief rabble-rouser and propagandist. In this essay,

I describe the tumultuous year that followed, focusing on

the media stategy and language we used to break through

to the Fortune 500. I finish with a look at where the trend

curves are going.

167

22 December 2000 17:47

22 December 2000 17:47

Revenge of the Hackers

I wrote the first version of A Brief History of Hackerdom in 1996
as a web resource. I had been fascinated by hacker culture as a
culture for many years, since long before I edited the first edition
of The New Hacker’s Dictionary in 1990. By late 1993, many
people (including myself) had come to think of me as the hacker
culture’s tribal historian and resident ethnographer. I was comfort-
able in that role.

At that time, I had not the faintest idea that my amateur anthro-
pologizing could itself become a significant catalyst for change. I
think nobody was more surprised than I when that happened. But
the consequences of that surprise are still reverberating through
the hacker culture and the technology and business worlds today.

In this essay, I’ll recapitulate from my personal point of view the
events that immediately led up to the January 1998 ‘‘shot heard
’round the world’’ of the open-source revolution. I’ll reflect on the
remarkable distance we’ve come since. Then I will tentatively offer
some projections into the future.

Beyond Brooks’s Law

My first encounter with Linux came in late 1993, via the pioneer-
ing Yggdrasil CD-ROM distribution. By that time, I had already
been involved in the hacker culture for 15 years. My earliest expe-
riences had been with the primitive ARPAnet of the late 1970s; I
was even briefly a tourist on the ITS machines. I had already been
writing free software and posting it to Usenet before the Free Soft-
ware Foundation was launched in 1984, and was one of the FSF’s

Revenge of the Hackers

169

22 December 2000 17:47

The Cathedral and the Bazaar

first contributors. I had just published the second edition of The
New Hacker’s Dictionary. I thought I understood the hacker cul-
ture — and its limitations—pretty well.

As I have written elsewhere, encountering Linux came as a shock.
Even though I had been active in the hacker culture for many
years, I still carried in my head the unexamined assumption that
hacker amateurs, gifted though they might be, could not possibly
muster the resources or skill necessary to produce a usable multi-
tasking operating system. The HURD developers, after all, had
been evidently failing at this for a decade.

But where they failed, Linus Torvalds and his community suc-
ceeded. And they did not merely fulfill the minimum requirements
of stability and functioning Unix interfaces. No. They blew right
past that criterion with exuberance and flair, providing hundreds
of megabytes of programs, documents, and other resources. Full
suites of Internet tools, desktop-publishing software, graphics sup-
port, editors, games . . . you name it.

Seeing this feast of wonderful code spread in front of me as a
working system was a much more powerful experience than
merely knowing, intellectually, that all the bits were probably out
there. It was as though for years I’d been sorting through piles of
disconnected car parts—only to be suddenly confronted with
those same parts assembled into a gleaming red Ferrari, door
open, keys swinging from the lock, and engine gently purring with
a promise of power

The hacker tradition I had been observing for two decades seemed
suddenly alive in a vibrant new way. In a sense, I had already been
made part of this community, for several of my personal free-soft-
ware projects had been added to the mix. But I wanted to get in
deeper . . . because every delight I saw also deepened my puzzle-
ment. It was too good!

The lore of software engineering is dominated by Brooks’s Law,
articulated in Fred Brooks’s classic The Mythical Man-Month.

170

22 December 2000 17:47

Brooks predicts that as your number of programmers N rises,
work performed scales as N but complexity and vulnerability to
bugs rises as N2. N2 tracks the number of communications paths
(and potential code interfaces) between developers’ code bases.

Brooks’s Law predicts that a project with thousands of contribu-
tors ought to be a flaky, unstable mess. Somehow the Linux com-
munity had beaten the N2 effect and produced an OS of
astonishingly high quality. I was determined to understand how
they did it.

It took me three years of participation and close observation to
develop a theory, and another year to test it experimentally. And
then I sat down and wrote The Cathedral and the Bazaar to
explain what I had seen.

Memes and Mythmaking

What I saw around me was a community that had evolved the
most effective software-development method ever and didn’t know
it! That is, an effective practice had evolved as a set of customs,
transmitted by imitation and example, without the theory or lan-
guage to explain why the practice worked.

In retrospect, lacking that theory and that language hampered us
in two ways. First: we couldn’t think systematically about how to
improve our own methods. Second: we couldn’t explain or sell the
method to anyone else.

At the time, I was thinking about only the first effect. My sole
intention in writing the original paper was to give the hacker cul-
ture an appropriate language to use internally, to explain itself to
itself. So I wrote down what I had seen, framed as a narrative and
with appropriately vivid metaphors to describe the logic that
could be deduced behind the customs.

There was no really fundamental discovery in The Cathedral and
the Bazaar. I did not invent any of the methods it describes. What
was novel was not the facts it described but those metaphors and

Revenge of the Hackers

171

22 December 2000 17:47

The Cathedral and the Bazaar

the narrative—a simple, powerful story that encouraged the
reader to see the facts in a new way. I was attempting a bit of
memetic engineering on the hacker culture’s generative myths.

I first gave the full paper at Linux Kongress, May 1997 in Bavaria.
The fact that it was received with rapt attention and thunderous
applause by an audience in which there were very few native
speakers of English seemed to confirm that I was onto something.
But, as it turned out, the sheer chance that I was seated next to
publisher Tim O’Reilly at the Thursday night banquet set in
motion a more important train of consequences.

As a long-time admirer of O’Reilly’s institutional style, I had been
looking forward to meeting Tim for some years. We had a wide-
ranging conversation (much of it exploring our common interest
in classic science fiction) that led to an invitation for me to deliver
The Cathedral and the Bazaar at Tim’s Perl Conference later in the
year.

Once again, the paper was well-received—with cheers and a
standing ovation, in fact. I knew from my email that since
Bavaria, word about The Cathedral and the Bazaar had spread
over the Internet like a fire in dry grass. Many in the audience had
already read it, and my speech was less a revelation of novelty for
them than an opportunity to celebrate the new language and the
consciousness that went with it. That standing ovation was not so
much for my work as for the hacker culture itself—and rightly so.

Though I didn’t know it, my experiment in memetic engineering
was about to light a bigger fire. Some of the people for whom my
speech was genuinely novel were from Netscape Communications,
Inc. And Netscape was in trouble.

Netscape, a pioneering Internet-technology company and Wall
Street highflier, had been targeted for destruction by Microsoft.
Microsoft rightly feared that the open Web standards embodied
by Netscape’s browser might lead to an erosion of the Redmond
giant’s lucrative monopoly on the PC desktop. All the weight of

172

22 December 2000 17:47

Microsoft’s billions, and shady tactics that would later trigger an
antitrust lawsuit, were deployed to crush the Netscape browser.

For Netscape, the issue was less browser-related income (never
more than a small fraction of their revenues) than maintaining a
safe space for their much more valuable server business. If
Microsoft’s Internet Explorer achieved market dominance,
Microsoft would be able to bend the Web’s protocols away from
open standards and into proprietary channels that only
Microsoft’s servers would be able to service.

Within Netscape there was intense debate about how to counter
the threat. One of the options proposed early on was to throw the
Netscape browser source open—but it was a hard case to argue
without strong reasons to believe that doing so would prevent
Internet Explorer dominance.

I didn’t know it at the time, but The Cathedral and the Bazaar
became a major factor in making that case. Through the winter of
1997, as I was working on the material for my next paper, the
stage was being set for Netscape to break the rules of the propri-
etary game and offer my tribe an unprecedented opportunity.

The Road to Mountain View

On 22 January 1998 Netscape announced that it would release
the sources of the Netscape client line to the Internet. Shortly after
the news reached me the following day, I learned that CEO Jim
Barksdale was describing my work to national-media reporters as
‘‘fundamental inspiration’’ for the decision.

This was the event that commentators in the computer trade press
would later call ‘‘the shot heard ’round the world’—and Barks-
dale had cast me as its Thomas Paine, whether I wanted the role
or not. For the first time in the history of the hacker culture, a For-
tune 500 darling of Wall Street had bet its future on the belief that
our way was right. And, more specifically, that my analysis of
“our way” was right.

Revenge of the Hackers

173

22 December 2000 17:47

The Cathedral and the Bazaar

This is a pretty sobering kind of shock to deal with. I had not been
very surprised when The Cathedral and the Bazaar altered the
hacker culture’s image of itself; that was the result I had been try-
ing for, after all. But I was astonished (to say the least) by the
news of its success on the outside. So I did some very hard think-
ing in first few hours after word reached me. About the state of
Linux and the hacker community. About Netscape. And about
whether I, personally, had what it would take to make the next
step.

It was not difficult to conclude that helping Netscape’s gamble
succeed had just become a very high priority for the hacker cul-
ture, and thus for me personally. If Netscape’s gamble failed, we
hackers would probably find all the opprobrium of that failure
piled on our heads. We’d be discredited for another decade. And
that would be just too much to take.

By this time I had been in the hacker culture, living through its
various phases, for twenty years. Twenty years of repeatedly
watching brilliant ideas, promising starts, and superior technolo-
gies crushed by slick marketing. Twenty years of watching hackers
dream and sweat and build, too often only to watch the likes of
the bad old IBM or the bad new Microsoft walk away with the
real-world prizes. Twenty years of living in a ghetto—a fairly
comfortable ghetto full of interesting friends, but still one walled
in by a vast and intangible barrier of mainsteam prejudice
inscribed ‘‘ONLY FLAKES LIVE HERE’’.

The Netscape announcement cracked that barrier, if only for a
moment; the business world had been jolted out of its compla-
cency about what ‘hackers’ are capable of. But lazy mental habits
have huge inertia. If Netscape failed, or perhaps even if they suc-
ceeded, the experiment might come to be seen as a unique one-off
not worth trying to repeat. And then we’d be back in the same
ghetto, walls higher than before.

To prevent that, we needed Netscape to succeed. So I considered
what I had learned about bazaar-mode development, and called

174

22 December 2000 17:47

up Netscape, and offered to help with developing their license and
in working out the details of the strategy. In early February I flew
to Mountain View at their request for seven hours of meetings
with various groups at Netscape HQ, and helped them develop
the outline of what would become the Mozilla Public License and
the Mozilla organization.

While there, I met with several key people in the Silicon Valley
and national Linux community. While helping Netscape was
clearly a short-term priority, everybody I spoke with had already
understood the need for some longer-term strategy to follow up on
the Netscape release. It was time to develop one.

The Origins of ‘Open Source’

It was easy to see the outlines of the strategy. We needed to take
the pragmatic arguments I had pioneered in The Cathedral and
the Bazaar, develop them further, and push them hard, in public.
Because Netscape itself had an interest in convincing investors that
its strategy was not crazy, we could count on it to help the promo-
tion. We also recruited Tim O’Reilly (and through him, O’Reilly
& Associates) very early on.

The real conceptual breakthrough, though, was admitting to our-
selves that what we needed to mount was in effect a marketing
campaign—and that it would require marketing techniques (spin,
image-building, and rebranding) to make it work.

Hence the term ‘open source’, which the first participants in what
would later become the Open Source campaign (and, eventually,
the Open Source Initiative organization) invented at a meeting
held in Mountain View in the offices of VA Research (now VA
Linux Systems) on 3 February 1998.

It seemed clear to us in retrospect that the term ‘free software’ had
done our movement tremendous damage over the years. Part of
this stemmed from the fact that the word ‘free’ has two different
meanings in the English language, one suggesting a price of zero

Revenge of the Hackers

175

22 December 2000 17:47

The Cathedral and the Bazaar

and one related to the idea of liberty. Richard Stallman, whose
Free Software Foundation has long championed the term, says
‘‘Think free speech, not free beer’’ but the ambiguity of the term
has nevertheless created serious problems—especially since most
free software is also distributed free of charge.

Most of the damage, though, came from something worse—the
strong association of the term ‘free software’ with hostility to
intellectual property rights, communism, and other ideas hardly
likely to endear it to an MIS manager.

It was, and still is, beside the point to argue that the Free Software
Foundation is not hostile to all intellectual property and that its
position is not exactly communistic. We knew that. What we real-
ized, under the pressure of the Netscape release, was that FSF’s
actual position didn’t matter. Only the fact that its evangelism had
backfired (associating ‘free software’ with these negative stereo-
types in the minds of the trade press and the corporate world)
actually mattered.

Our success after Netscape would depend on replacing the nega-
tive FSF stereotypes with positive stereotypes of our own—prag-
matic tales, sweet to managers’ and investors’ ears, of higher
reliability and lower cost and better features.

In conventional marketing terms, our job was to rebrand the
product, and build its reputation into one the corporate world
would hasten to buy.

Linus Torvalds endorsed the idea the day after that first meeting.
We began acting on it within a few days after. Bruce Perens had
the opensource.org domain registered and the first version of the
Open Source website (http://www.opensource.edu) up within a
week. He also suggested that the Debian Free Software Guidelines
become the ‘Open Source Definition’ (http://www.opensource.org/
osd.html), and began the process of registering ‘Open Source’ as a
certification mark so that we could legally require people to use
‘Open Source’ for products conforming to the OSD.

176

22 December 2000 17:47

Even the particular tactics needed to push the strategy seemed
pretty clear to me at this early stage (and were explicitly discussed
at the initial meeting). Key themes follow.

1. Forget Bottom-Up; Work on Top-Down

One of the things that seemed clearest was that the historical Unix
strategy of bottom-up evangelism (relying on engineers to per-
suade their bosses by rational argument) had been a failure. This
was naive and easily trumped by Microsoft. Further, the Netscape
breakthrough didn’t happen that way. It happened because a
strategic decision-maker (Jim Barksdale) got the clue and then
imposed that vision on the people below him.

The conclusion was inescapable. Instead of working bottom-up,
we should be evangelizing top-down—making a direct effort to
capture the CEO/CTO/CIO types.

2. Linux Is Our Best Demonstration Case

Promoting Linux must be our main thrust. Yes, there are other
things going on in the open-source world, and the campaign will
bow respectfully in their direction—but Linux started with the
best name recognition, the broadest software base, and the largest
developer community. If Linux can’t consolidate the break-
through, nothing else will, pragmatically speaking, have a prayer.

3. Capture the Fortune 500

There are other market segments that spend more dollars (small
business and home office being the most obvious examples) but
those markets are diffuse and hard to address. The Fortune 500
doesn’t merely have lots of money, it concentrates lots of money
where it’s relatively accessible. Therefore, the software industry
largely does what the Fortune 500 business market tells it to do.
And therefore, it is primarily the Fortune 500 we need to
convince.

Revenge of the Hackers

177

22 December 2000 17:47

The Cathedral and the Bazaar

4. Co-opt the Prestige Media that Serve
the Fortune 500

The choice to target the Fortune 500 implies that we need to cap-
ture the media that shape the climate of opinion among top-level
decision-makers and investors: very specifically, the New York
Times, the Wall Street Journal, the Economist, Forbes, and Bar-
ron’s Magazine.

On this view, co-opting the technical trade press is necessary but
not sufficient; it’s important essentially as a pre-condition for
storming Wall Street itself via the elite mainstream media.

5. Educate Hackers in Guerrilla Marketing
Ta ctics

It was also clear that educating the hacker community itself would
be just as important as mainstream outreach. It would be insuffi-
cient to have one or a handful of ambassadors speaking effective
language if, at the grass roots, most hackers were making argu-
ments that didn’t work.

6. Use the Open Source Certification Mark
to Keep Things Pure

One of the threats we faced was the possibility that the term ‘open
source’ would be ‘‘embraced and extended’’ by Microsoft or other
large vendors, corrupting it and losing our message. It is for this
reason the Bruce Perens and I decided early on to register the term
as a certification mark and tie it to the Open Source Definition (a
copy of the Debian Free Software Guidelines). This would allow
us to scare off potential abusers with the threat of legal action.

It eventually developed that the U.S. Patent and Trademark office
would not issue a trademark for such a descriptive phrase. Fortu-
nately, by the time we had to write off the effort to formally trade-
mark “Open Source” a year later, the term had acquired its own

178

22 December 2000 17:47

momentum in the press and elsewhere. The sorts of serious abuse
we feared have not (at least, not yet as of November 2000) actu-
ally materialized.

The Accidental Revolutionary

Planning this kind of strategy was relatively easy. The hard part
(for me, anyway) was accepting what my own role had to be.

One thing I understood from the beginning is that the press almost
completely tunes out abstractions. They won’t write about ideas
without larger-than-life personalities fronting them. Everything
has to be story, drama, conflict, sound bites. Otherwise, most
reporters will simply go to sleep—and even if they don’t, their edi-
tors will.

Accordingly, I knew somebody with very particular characteristics
would be needed to front the community’s response to the
Netscape opportunity. We needed a firebrand, a spin doctor, a pro-
pagandist, an ambassador, an evangelist — somebody who could
dance and sing and shout from the housetops and seduce reporters
and huggermug with CEOs and bang the media machine until its
contrary gears ground out the message: the revolution is here!

Unlike most hackers, I have the brain chemistry of an extrovert
and had already had extensive experience at dealing with the
press. Looking around me, I couldn’t see anyone better qualified
to play evangelist. But I didn’t want the job, because I knew it
would cost me my life for many months, maybe for years. My pri-
vacy would be destroyed. I’d probably end up both caricatured as
a geek by the mainstream press and (worse) despised as a sell-out
or glory-hog by a significant fraction of my own tribe. Worse than
all the other bad consequences put together, I probably wouldn’t
have time to hack anymore!

Revenge of the Hackers

179

22 December 2000 17:47

The Cathedral and the Bazaar

I had to ask myself: are you fed up enough with watching your
tribe lose to do whatever it takes to win? I decided the answer was
yes — and having so decided, threw myself into the dirty but neces-
sary job of becoming a public figure and media personality.

I’d learned some basic media chops while editing The New
Hacker’s Dictionary. This time I took it much more seriously and
developed an entire theory of media manipulation, which I then
proceeded to apply. The theory centers around the use of what I
call ‘‘attractive dissonance’’ to fan an itchy curiosity about the
evangelist, and then exploiting that itch for all it’s worth in pro-
moting the ideas.

This is not the place for a detailed exposition of my theory. But
intelligent readers can probably deduce much of it from the phrase
‘‘optimal level of provocation’’ and the fact that my interview
technique involves cheerfully discussing my interests in guns, anar-
chism, and witchcraft while looking as well-groomed, boyishly
charming, and all-American wholesome as I can possibly manage.
The trick is to sound challengingly weird but convey a reassuring
aura of honesty and simplicity. (Note that to make the trick work,
I think you have to genuinely be like that; faking either quality has
a high risk of exposure and I don’t recommend it.)

The combination of the ‘‘open source’’ label and deliberate pro-
motion of myself as an evangelist turned out to have both the
good and bad consequences that I expected. The ten months after
the Netscape announcement featured a steady exponential
increase in media coverage of Linux and the open-source world in
general. Throughout this period, approximately a third of these
articles quoted me directly; most of the other two thirds used me
as a background source. At the same time, a vociferous minority
of hackers declared me an evil egotist. I managed to preserve a
sense of humor about both outcomes (though occasionally with
some difficulty).

My plan from the beginning was that, eventually, I would hand
off the evangelist role to some successor, either an individual or

180

22 December 2000 17:47

organization. There would come a time when charisma became
less effective than broad-based institutional respectability (and,
from my own point of view, the sooner the better!). I am attempt-
ing to transfer my personal connections and carefully built-up rep-
utation with the press to the Open Source Initiative, an
incorporated nonprofit formed specifically to manage the Open
Source trademark. At time of writing I am the president of this
organization, but hope and expect not to remain so indefinitely.

Phases of the Campaign

The open-source campaign began with the Mountain View meet-
ing, and rapidly collected an informal network of allies over the
Internet (including key people at Netscape and O’Reilly & Associ-
ates). Where I write “we” below I’m referring to that network.

From 3 February to around the time of the actual Netscape release
on 31 March, our primary concern was convincing the hacker
community that the ‘open source’ label and the arguments that
went with it represented our best shot at persuading the main-
stream. As it turned out, the change was rather easier than we
expected. We discovered a lot of pent-up demand for a message
less doctrinaire than the Free Software Foundation’s.

Tim O’Reilly invited 20-odd leaders of major free software pro-
jects to what came to be called the Free Software Summit on 7
March. When these leaders voted to adopt the term ‘open source’,
they formally ratified a trend that was already clear at the grass
roots among developers. By six weeks after the Mountain View
meeting, a healthy majority of the community was speaking our
language.

The publicity following the Free Software Summit introduced the
mainstream press to the term, and also gave notice that Netscape
was not alone in adopting the open-source concept. We’d given a
name to a phenomenon whose impact was already larger than

Revenge of the Hackers

181

22 December 2000 17:47

The Cathedral and the Bazaar

anyone outside the Internet community had yet realized. Far from
being fringe challengers, open source programs were already mar-
ket leaders in providing key elements of the Internet infrastruc-
ture. Apache was the leading web server, with more than 50%
market share (now grown to more than 60%). Perl was the domi-
nant programming language for the new breed of web-based
applications. Sendmail routes more than 80% of all Internet email
messages. And even the ubiquitous domain name system (which
lets us use names like www.yahoo.com rather than obscure
numeric IP addresses) depends almost entirely on an open-source
program called BIND. As Tim O’Reilly said during the press con-
ference following the summit, pointing to the assembled program-
mers and project leaders: ‘‘These people have created products
with dominant market share using only the power of their ideas
and the networked community of their co-developers.’’ What
more might be possible if large companies also adopted the open
source methodology?

That was a good start to our ‘air war’, our attempt to change per-
ceptions through the press. But we still needed to maintain
momentum on the ground. In April, after the Summit and the
actual Netscape release, our main concern shifted to recruiting as
many open-source early adopters as possible. The goal was to
make Netscape’s move look less singular—and to buy us insur-
ance in case Netscape executed poorly and failed its goals.

This was the most worrying time. On the surface, everything
seemed to be coming up roses; Linux was moving technically from
strength to strength, the wider open-source phenomenon was
enjoying a spectacular explosion in trade press coverage, and we
were even beginning to get positive coverage in the mainstream
press. Nevertheless, I was uneasily aware that our success was still
fragile. After an initial flurry of contributions, community partici-
pation in Mozilla was badly slowed down by its requirement for
the proprietary Motif toolkit. None of the big independent soft-
ware vendors had yet committed to Linux ports. Netscape was
still looking lonely, and its browser still losing market share to

182

22 December 2000 17:47

Internet Explorer. Any serious reverse could lead to a nasty back-
lash in the press and public opinion.

Our first serious post-Netscape breakthrough came on 7 May
when Corel Computer announced its Linux-based Netwinder net-
work computer. But that wasn’t enough in itself; to sustain the
momentum, we needed commitments not from hungry second-
stringers but from industry leaders. Thus, it was the mid-July
announcements by Oracle and Informix that really closed out this
vulnerable phase.

The database outfits joined the Linux party three months earlier
than I expected, but none too soon. We had been wondering how
long the positive buzz could last without major ISV support and
feeling increasingly nervous about where we’d actually find that.
After Oracle and Informix announced Linux ports other ISVs
began announcing Linux support almost as a matter of routine,
and even a failure of Mozilla became survivable.

Mid-July through the beginning of November was a consolidation
phase. It was during this time that we started to see fairly steady
coverage from the financial media I had originally targeted, led off
by articles in the Economist and a cover story in Forbes. Various
hardware and software vendors sent out feelers to the open-source
community and began to work out strategies for getting advantage
from the new model. And internally, the biggest closed-source ven-
dor of them all was beginning to get seriously worried.

Just how worried became apparent when the now-infamous
Halloween Documents (http://www.opensource.org/halloween/)
leaked out of Microsoft. These internal strategy documents recog-
nized the power of the open-source model, and outlined
Microsoft’s analysis of how to combat it by corrupting the open
protocols on which open source depends and choking off cus-
tomer choice.

The Halloween Documents were dynamite. They were a ringing
testimonial to the strengths of open-source development from the

Revenge of the Hackers

183

22 December 2000 17:47

The Cathedral and the Bazaar

company with the most to lose from Linux’s success. And they
confirmed a lot of people’s darkest suspicions about the tactics
Microsoft would consider in order to stop it.

The Halloween Documents attracted massive press coverage in the
first few weeks of November. They created a new surge of interest
in the open-source phenomenon, serendipitously confirming all the
points we had been making for months. And they led directly to a
request for me to confer with a select group of Merrill Lynch’s
major investors on the state of the software industry and the
prospects for open source. Wall Street, finally, came to us.

The following six months were a study in increasingly surreal con-
trasts. On the one hand, I was getting invited to give talks on open
source to Fortune 100 corporate strategists and technology
investors; for the first time in my life, I got to fly first class and
saw the inside of a stretch limousine. On the other hand, I was
doing guerrilla street theater with grass-roots hackers—as in the
riotously funny Windows Refund Day demonstration of 15 March
1999, when a band of Bay Area Linux users actually marched on
the Microsoft offices in the glare of full media coverage, demand-
ing refunds under the terms of the Microsoft End User License for
the unused Windows software that had been bundled with their
machines.

I knew I was going to be in town that weekend to speak at a con-
ference hosted by the Reason Foundation, so I volunteered to be a
marshal for the event. Back in December I’d been featured in a
Star Wars parody plot (http://www.userfriendly.org/cartoons/
archives/98dec/19981203.html) in the Internet comic strip “User
Friendly”. So I joked with the organizers about wearing an Obi-
Wan Kenobi costume at the demonstration.

To my surprise, when I arrived I found the organizers had actually
made a passable Jedi costume—and that’s how I found myself

184

22 December 2000 17:47

leading a parade that featured cheeky placards and an American
flag and a rather large plastic penguin, booming out “May the
Source be with you!” to delighted reporters. To my further sur-
prise, I was drafted to make our statement to the press.

I suppose none of us should have really been astonished when the
video made CNBC. The demonstration was a tremendous success.
Microsoft’s PR position, still trying to recover from the exposure
of the Halloween Documents, took another body blow. And
within weeks, major PC and laptop manufacturers began
announcing that they would ship machines with no Windows
installed and no ‘‘Microsoft tax’’ in the price. Our bit of guerilla
theater, it appeared, had struck home.

The Facts on the Ground

While the Open Source campaign’s air war in the media was going
on, key technical and market facts on the ground were also chang-
ing. I’ll briefly review some of them here because they combine
interestingly with the trends in press and public perception.

In the 18 months after the Netscape release, Linux continued to
grow rapidly more capable. The development of solid SMP sup-
port and the effective completion of the 64-bit cleanup laid impor-
tant groundwork for the future.

The roomful of Linux boxes used to render scenes for the Titanic
threw a healthy scare of expensive graphics engines into builders.
Then the Beowulf supercomputer-on-the-cheap project showed
that Linux’s Chinese-army sociology could be successfully applied
even to cutting-edge scientific computing.

Nothing dramatic happened to vault Linux’s open-source competi-
tors into the limelight. And proprietary Unixes continued to lose
market share; in fact, by mid-year only NT and Linux were actu-
ally gaining market share in the Fortune 500, and by late fall
Linux was gaining faster (and more at the expense of NT than of
other Unixes).

Revenge of the Hackers

185

22 December 2000 17:47

The Cathedral and the Bazaar

Apache continued to increase its lead in the web-server market.
(By August 1999 Apache and its derivatives would be running
fully 61% of the world’s publicly accessible web servers.) In
November 1998, Netscape’s browser reversed its market-share
slide and began to make gains against Internet Explorer.

In April 1999 the respected computer-market researchers IDG pre-
dicted that Linux would grow twice as fast as all other server
operating systems combined through 2003—and faster than Win-
dows NT. In May, Kleiner-Perkins (Silicon Valley’s leading ven-
ture-capital firm) took a lead position in financing a Linux startup.

About the only negative development was the continuing prob-
lems of the Mozilla project. I have analyzed these elsewhere (in
The Magic Cauldron). They came to a head when Jamie Zawinski,
a Mozilla co-founder and the public face of the project, resigned a
year and a day after the release of the source code, complaining of
mismanagement and lost opportunities.

But it was an indication of the tremendous momentum open
source had acquired by this time that Mozilla’s troubles did not
noticeably slow down the pace of adoption. The trade press,
remarkably, drew the right lesson: “Open source,” in Jamie’s now-
famous words, “is [great, but it’s] not magic pixie dust.”

In the early part of 1999 a trend began among big independent
software vendors (ISVs) to port their business applications to
Linux, following the lead set earlier by the major database ven-
dors. In late July, the biggest of them all, Computer Associates,
announced that it would be supporting Linux over much of its
product line. And preliminary results from an August 1999 survey
of 2000 IT managers revealed that 49% consider Linux an
“important or essential” element of their enterprise computing
strategies. Another survey by IDC described what it called ‘‘an
amazing level of growth’’ since 1998, when the market research
couldn’t find statistically significant use of Linux; 13% of the
respondents now employ it in business operations.

186

22 December 2000 17:47

The year 1999 also saw a wave of wildly successful Linux IPOs by
Red Hat Linux, VA Linux Systems, and other Linux companies.
While the overblown dot-com–like initial valuations investors
originally put on them didn’t outlast the big market corrections in
March 2000, these firms established an unmistakable for-profit
industry around open source that continues to be a focus of
investor interest.

Into the Future

I have rehearsed recent history here only partly to get it into the
record. More importantly, it sets a background against which we
can understand near-term trends and project some things about
the future.

First, safe predictions for the next year:

• The open-source developer population will continue to
explode, a growth fueled by ever-cheaper PC hardware and
fast Internet connections.

• Linux will continue to lead the way, the sheer size of its devel-
oper community overpowering the higher average skill of the
open-source BSD people and the tiny HURD crew.

• ISV commitments to support the Linux platform will increase
dramatically; the database-vendor commitments were a turn-
ing point.

• The Open Source campaign will continue to build on its victo-
ries and successfully raise awareness at the CEO/CTO/CIO
and investor level. MIS directors will feel increasing pressure
to go with open-source products not from below but from
above.

• Stealth deployments of Samba-over-Linux will replace increas-
ing numbers of NT machines even at shops that have all-
Microsoft policies.

Revenge of the Hackers

187

22 December 2000 17:47

The Cathedral and the Bazaar

• The market share of proprietary Unixes will continue to grad-
ually erode. At least one of the weaker competitors (likely
DG-UX or HP-UX) will actually fold. But by the time it hap-
pens, analysts will attribute it to Linux’s gains rather than
Microsoft’s.

• Microsoft will not have an enterprise-ready operating system,
because Windows 2000 will not ship in a usable form. (At 60
million lines of code and still bloating, its development is out
of control.)

I wrote the above predictions in mid-December of 1998. All are
still holding good as of November 2000, two years after they were
written. Only the last one is arguable; Microsoft managed to ship
Windows 2000 by drastically curtailing its feature list; adoption
rates have not been what they hoped.

Extrapolating these trends certainly suggests some slightly riskier
predictions for the medium term (18 to 32 months out).

• Support operations for commercial customers of open-source
operating systems will become big business, both feeding off
of and fueling the boom in business use.

(This has already come true in 1999 with the launch of Linux-
Care, and Linux support-service announcements by IBM and
HP and others.)

• Open-source operating systems (with Linux leading the way)
will capture the ISP and business data-center markets. NT will
be unable to resist this change effectively; the combination of
low cost, open sources, and true 24/7 reliability will prove
unstoppable.

• The proprietary-Unix sector will almost completely collapse.
Solaris looks like a safe bet to survive on high-end Sun hard-
ware, but most other players’ proprietary Unixes will quickly
become legacy systems.

(In early 2000, SGI’s IRIX was dead-ended by official Linux
adoption within SGI itself, and in mid-2000 SCO agreed to be

188

22 December 2000 17:47

acquired by Caldera. It now looks probable that a number of
Unix hardware vendors will switch horses to Linux without
much fuss, as SGI is already well into the process of doing.)

• Windows 2000 will be either canceled or dead on arrival.
Either way it will turn into a horrendous train wreck, the
worst strategic disaster in Microsoft’s history. However, their
marketing spin on this failure will be so deft that it will barely
affect their hold on the consumer desktop within the next two
years.

(In mid-2000, a just-published IDG survey suggested that
‘‘dead on arrival’’ looks more likely all the time, with most
large corporate respondents simply refusing to deploy the ini-
tial release and existing deployments experiencing serious
security and stability problems. The fact that Microsoft itself
was cracked twice in late October/early November of 2000
hardly helped.)

At first glance, these trends look like a recipe for leaving Linux as
the last one standing. But life is not that simple, and Microsoft
derives such immense amounts of money and market clout from
the desktop market that it can’t safely be counted out even after
the Windows 2000 train wreck.

But there are also reasons to believe that Microsoft is going to
experience serious problems in 2001 that aren’t related to either
Linux or the Department of Justice. As hardware prices drop, the
59% of Microsoft’s revenues that come from selling fixed-price
preinstallation licenses to PC OEMs is under pressure. Those fixed
license costs represent an ever-increasing slice of OEM’s gross
margins; at some point, the OEMs are going to have to claw back
some of that last margin from Redmond in order to make any
profits at all. We know where the critical price point is from
observing the appliance and PDA market; it’s at about $350 retail.
On previous trends, desktop prices will cross $350 going down
well before midyear 2001—and when that happens, OEMs will
have to defect from the Microsoft camp to survive.

Revenge of the Hackers

189

22 December 2000 17:47

The Cathedral and the Bazaar

Nor will it help Microsoft to respond in the obvious way by
charging a percentage of the system’s retail price instead of a fixed
per-unit fee. OEMs can easily fiddle that system by unbundling
expensive outboard components like the monitor—and even if
they didn’t, Wall Street would regard such a move as an admission
that Microsoft had lost control of its future revenues. One way or
another, Microsoft’s revenues look likely to crash hard long before
DOJ gets a final ruling.

So at two years out the crystal ball gets a bit cloudy. Which of sev-
eral futures we get depends on questions like: will the DOJ actu-
ally succeed in breaking up Microsoft? Might BeOS or OS/2 or
Mac OS/X or some other niche closed-source OS, or some com-
pletely new design, find a way to go open and compete effectively
with Linux’s 30-year-old base design? At least Y2K fizzled

These are all fairly imponderable. But there is one such question
that is worth pondering: Will the Linux community actually
deliver a good end-user–friendly GUI interface for the whole
system?

In the 1999 first edition of this book, I said the most likely sce-
nario for late 2000/early 2001 has Linux in effective control of
servers, data centers, ISPs, and the Internet, while Microsoft main-
tains its grip on the desktop. By November 2000 this prediction
had proved out pretty completely except in large corporate data
centers, and there it looks very likely to be fulfilled within months.

Where things go from there depend on whether GNOME, KDE,
or some other Linux-based GUI (and the applications built or
rebuilt to use it) ever get good enough to challenge Microsoft on
its home ground.

If this were primarily a technical problem, the outcome would
hardly be in doubt. But it isn’t; it’s a problem in ergonomic design
and interface psychology, and hackers have historically been poor
at these things. That is, while hackers can be very good at design-
ing interfaces for other hackers, they tend to be poor at modeling

190

22 December 2000 17:47

the thought processes of the other 95% of the population well
enough to write interfaces that J. Random End-User and his Aunt
Tillie will pay to buy.

Applications were 1999’s problem; it’s now clear we’ll swing
enough ISVs to get the ones we don’t write ourselves. I believe the
problem for 2001 and later is whether we can grow enough to
meet (and exceed!) the interface-design quality standard set by the
Macintosh, combining that with the virtues of the traditional Unix
way.

As of mid-2000, help may be on the way from the inventors of the
Macintosh! Andy Hertzfeld and other members of the original
Macintosh design team have formed an open-source company
called Eazel with the explicit goal of bringing the Macintosh
magic to Linux.

We half-joke about ‘world domination’, but the only way we will
get there is by serving the world. That means J. Random End-User
and his Aunt Tillie; and that means learning how to think about
what we do in a fundamentally new way, and ruthlessly reducing
the user-visible complexity of the default environment to an abso-
lute minimum.

Computers are tools for human beings. Ultimately, therefore, the
challenges of designing hardware and software must come back to
designing for human beings—all human beings.

This path will be long, and it won’t be easy. But I think the hacker
community, in alliance with its new friends in the corporate
world, will prove up to the task. And, as Obi-Wan Kenobi might
say, ‘‘the Source will be with us’’.

Revenge of the Hackers

191

22 December 2000 17:47

AFTERWORD

Beyond Software?

✦ ✦ ✦

The essays in this book were a beginning, but they are not an end.
There are many questions not yet resolved about open-source soft-
ware. And there are many questions about other kinds of creative
work and intellectual property that the open-source phenomenon
raises, but does not really suggest a good answer for.

I am often asked if I believe the open-source model can be usefully
applied to other kinds of goods than software. Most usually the
question is asked about music, or the content of some kinds of
books, or designs for computer and electronic hardware. Almost
as frequently I am asked whether I think the open-source model
has political implications.

I am not short of opinions about music, books, hardware, or poli-
tics. Some of those opinions do indeed touch on the ideas about
peer review, decentralization, and openness explored in this book;
the interested reader is welcome to visit my home site
http://www.tuxedo.org/˜esr/ and make his or her own deductions.
However, I have deliberately avoided such speculation in connec-
tion with my work as a theorist and ambassador of open source.

The principle is simple: one battle at a time. My tribe is waging a
struggle to raise the quality and reliability expectations of soft-
ware consumers and overturn the standard operating procedures

193

22 December 2000 14:12

The Cathedral and the Bazaar

of the software industry. We face entrenched opposition with a lot
of money and mind-share and monopoly power. It’s not an easy
fight, but the logic and economics are clear; we can win and we
will win. If, that is, we stay focused on that goal.

Staying focused on the goal involves not wandering down a lot of
beguiling byways. This is a point I often feel needs emphasizing
when I address other hackers, because in the past our representa-
tives have shown a strong tendency to ideologize when they would
have been more effective sticking to relatively narrow, pragmatic
arguments.

Yes, the success of open source does call into some question the
utility of command-and-control systems, of secrecy, of centraliza-
tion, and of certain kinds of intellectual property. It would be
almost disingenuous not to admit that it suggests (or at least har-
monizes well with) a broadly libertarian view of the proper rela-
tionship between individuals and institutions.

These things having been said, however, it seems to me for the pre-
sent more appropriate to try to avoid over-applying these ideas. A
case in point; music and most books are not like software, because
they don’t generally need to be debugged or maintained. Without
that requirement, the utility of peer review is much lower, and the
rational incentives for some equivalent of open-sourcing therefore
nearly vanish. I do not want to weaken the winning argument for
open-sourcing software by tying it to a potential loser.

I expect the open-source movement to have essentially won its
point about software within three to five years (that is, by
2003–2005). Once that is accomplished, and the results have been
manifest for a while, they will become part of the background cul-
ture of non-programmers. At that point it will become more
appropriate to try to leverage open-source insights in wider
domains.

In the meantime, even if we hackers are not making an ideological
noise about it, we will still be changing the world.

194

22 December 2000 14:12

APPENDIX A

How to Become a Hacker

✦ ✦ ✦

Why This Document?

As editor of the Jargon File, http://www.tuxedo.org/jargon/, and
author of a few other well-known documents of similar nature, I
often get email requests from enthusiastic network newbies asking
(in effect) “How can I learn to be a wizard hacker?” Oddly
enough, there don’t seem to be any FAQs or web documents that
address this vital question, so here’s mine.

If you are reading a snapshot of this document offline, the current
version lives at http://www.tuxedo.org/ ̃ esr/faqs/hacker-howto
.html.

Note: there is a list of Frequently Asked Questions at the end of
this document.1 Please read these—twice — before mailing me any
questions about this document.

What Is a Hacker?

The Jargon File, http://www.tuxedo.org/jargon/, contains a bunch
of definitions of the term ‘hacker’, most having to do with techni-
cal adeptness and a delight in solving problems and overcoming
limits. If you want to know how to become a hacker, though, only
two are really relevant.

195

22 December 2000 17:48

The Cathedral and the Bazaar

There is a community, a shared culture, of expert programmers
and networking wizards that traces its history back through
decades to the first time-sharing minicomputers and the earliest
ARPAnet experiments. The members of this culture originated the
term ‘hacker’. Hackers built the Internet. Hackers made the Unix
operating system what it is today. Hackers run Usenet. Hackers
make the World Wide Web work. If you are part of this culture, if
you have contributed to it and other people in it know who you
are and call you a hacker, you’re a hacker.

The hacker mind-set is not confined to this software-hacker cul-
ture. There are people who apply the hacker attitude to other
things, like electronics or music—actually, you can find it at the
highest levels of any science or art. Software hackers recognize
these kindred spirits elsewhere and may call them “hackers”
too — and some claim that the hacker nature is really independent
of the particular medium the hacker works in. But in the rest of
this document we will focus on the skills and attitudes of software
hackers, and the traditions of the shared culture that originated
the term ‘hacker’.

There is another group of people who loudly call themselves hack-
ers, but aren’t. These are people (mainly adolescent males) who
get a kick out of breaking into computers and phreaking the
phone system. Real hackers call these people ‘crackers’ and want
nothing to do with them. Real hackers mostly think crackers are
lazy, irresponsible, and not very bright, and object that being able
to break security doesn’t make you a hacker any more than being
able to hotwire cars makes you an automotive engineer. Unfortu-
nately, many journalists and writers have been fooled into using
the word ‘hacker’ to describe crackers; this irritates real hackers to
no end.

The basic difference is this: hackers build things, crackers break
them.

If you want to be a hacker, keep reading. If you want to be a
cracker, go read the alt.2600 (news:alt.2600) newsgroup and get

196

22 December 2000 17:48

ready to do five to ten in the slammer after finding out you aren’t
as smart as you think you are. And that’s all I’m going to say
about crackers.

The Hacker Attitude

Hackers solve problems and build things, and they believe in free-
dom and voluntary mutual help. To be accepted as a hacker, you
have to behave as though you have this kind of attitude yourself.
And to behave as though you have the attitude, you have to really
believe the attitude.

But if you think of cultivating hacker attitudes as just a way to
gain acceptance in the culture, you’ll miss the point. Becoming the
kind of person who believes these things is important for you—
for helping you learn and keeping you motivated. As with all cre-
ative arts, the most effective way to become a master is to imitate
the mind-set of masters—not just intellectually but emotionally as
well.

So, if you want to be a hacker, repeat the following things until
you believe them:

1. The world Is Full of Fascinating Problems Wait-
ing to Be Solved.

Being a hacker is lots of fun, but it’s a kind of fun that takes lots
of effort. The effort takes motivation. Successful athletes get their
motivation from a kind of physical delight in making their bodies
perform, in pushing themselves past their own physical limits.
Similarly, to be a hacker you have to get a basic thrill from solving
problems, sharpening your skills, and exercising your intelligence.

If you aren’t the kind of person who feels this way naturally, you’ll
need to become one in order to make it as a hacker. Otherwise
you’ll find your hacking energy is sapped by distractions like sex,
money, and social approval.

(You also have to develop a kind of faith in your own learning
capacity — a belief that even though you may not know all of what

How to Become a Hacker

197

22 December 2000 17:48

The Cathedral and the Bazaar

you need to solve a problem, if you tackle just a piece of it and
learn from that, you’ll learn enough to solve the next piece—and
so on, until you’re done.)

2. Nobody Should Ever Have to Solve a Problem
Twice.

Creative brains are a valuable, limited resource. They shouldn’t be
wasted on re-inventing the wheel when there are so many fascinat-
ing new problems waiting out there.

To behave like a hacker, you have to believe that the thinking time
of other hackers is precious—so much so that it’s almost a moral
duty for you to share information, solve problems and then give
the solutions away just so other hackers can solve new problems
instead of having to perpetually re-address old ones.

(You don’t have to believe that you’re obligated to give all your
creative product away, though the hackers that do are the ones
who get most respect from other hackers. It’s consistent with
hacker values to sell enough of it to keep you in food and rent and
computers. It’s fine to use your hacking skills to support a family
or even get rich, as long as you don’t forget your loyalty to your
art and your fellow hackers while doing it.)

3. Boredom and Drudgery Are Evil.

Hackers (and creative people in general) should never be bored or
have to drudge at stupid repetitive work, because when this hap-
pens it means they aren’t doing what only they can do—solve new
problems. This wastefulness hurts everybody. Therefore boredom
and drudgery are not just unpleasant but actually evil.

To behave like a hacker, you have to believe this enough to want
to automate away the boring bits as much as possible, not just for
yourself but for everybody else (especially other hackers).

(There is one apparent exception to this. Hackers will sometimes
do things that may seem repetitive or boring to an observer as a
mind-clearing exercise, or in order to acquire a skill or have some
particular kind of experience you can’t have otherwise. But this is

198

22 December 2000 17:48

by choice—nobody who can think should ever be forced into a
situation that bores them.)

4. Freedom Is Good.

Hackers are naturally anti-authoritarian. Anyone who can give
you orders can stop you from solving whatever problem you’re
being fascinated by—and, given the way authoritarian minds
work, will generally find some appallingly stupid reason to do so.
So the authoritarian attitude has to be fought wherever you find it,
lest it smother you and other hackers.

(This isn’t the same as fighting all authority. Children need to be
guided and criminals restrained. A hacker may agree to accept
some kinds of authority in order to get something he wants more
than the time he spends following orders. But that’s a limited, con-
scious bargain; the kind of personal surrender authoritarians want
is not on offer.)

Authoritarians thrive on censorship and secrecy. And they distrust
voluntary cooperation and information-sharing—they only like
‘cooperation’ that they control. So to behave like a hacker, you
have to develop an instinctive hostility to censorship, secrecy, and
the use of force or deception to compel responsible adults. And
you have to be willing to act on that belief.

5. Attitude Is No Substitute for Competence.

To be a hacker, you have to develop some of these attitudes. But
copping an attitude alone won’t make you a hacker, any more
than it will make you a champion athlete or a rock star. Becoming
a hacker will take intelligence, practice, dedication, and hard
work.

Therefore, you have to learn to distrust attitude and respect com-
petence of every kind. Hackers won’t let poseurs waste their time,
but they worship competence—especially competence at hacking,

How to Become a Hacker

199

22 December 2000 17:48

The Cathedral and the Bazaar

but competence at anything is good. Competence at demanding
skills that few can master is especially good, and competence at
demanding skills that involve mental acuteness, craft, and concen-
tration is best.

If you revere competence, you’ll enjoy developing it in yourself—
the hard work and dedication will become a kind of intense play
rather than drudgery. And that’s vital to becoming a hacker.

Ba sic Hacking Skills

The hacker attitude is vital, but skills are even more vital. Attitude
is no substitute for competence, and there’s a certain basic toolkit
of skills that you have to have before any hacker will dream of
calling you one.

This toolkit changes slowly over time as technology creates new
skills and makes old ones obsolete. For example, it used to include
programming in machine language, and didn’t until recently
involve HTML. But right now it pretty clearly includes the
following.

1. Learn How to Program.

This, of course, is the fundamental hacking skill. If you don’t
know any computer languages, I recommend starting with Python.
It is cleanly designed, well documented, and relatively kind to
beginners. Despite being a good first language, it is not just a toy;
it is very powerful and flexible and well suited for large projects. I
have written a more detailed evaluation of Python,
http://noframes.linuxjournal.com/lj-issues/issue73/3882.html. A
tutorial is available at the Python website, http://www.python.org.

Java is also a good language for learning to program in. It is more
difficult than Python, but produces faster code than Python. I
think it makes an excellent second language.

But be aware that you won’t reach the skill level of a hacker or
even merely a programmer if you only know one or two lan-
guages — you need to learn how to think about programming

200

22 December 2000 17:48

problems in a general way, independent of any one language. To
be a real hacker, you need to get to the point where you can learn
a new language in days by relating what’s in the manual to what
you already know. This means you should learn several very dif-
ferent languages.

If you get into serious programming, you will have to learn C, the
core language of Unix. C++ is very closely related to C; if you
know one, learning the other will not be difficult. Neither lan-
guage is a good one to try learning as your first, however.

Other languages of particular importance to hackers include Perl
(http://www.perl.com) and LISP (http://snaefell.tamu.edu/ ̃ colin/
lp/). Perl is worth learning for practical reasons; it’s very widely
used for active web pages and system administration, so that even
if you never write Perl you should learn to read it. LISP is worth
learning for the profound enlightenment experience you will have
when you finally get it; that experience will make you a better pro-
grammer for the rest of your days, even if you never actually use
LISP itself a lot.

It’s best, actually, to learn all five of these (Python, Java, C/C++,
Perl, and LISP). Besides being the most important hacking lan-
guages, they represent very different approaches to programming,
and each will educate you in valuable ways.

I can’t give complete instructions on how to learn to program
here — it’s a complex skill. But I can tell you that books and
courses won’t do it (many, maybe most of the best hackers are
self-taught). You can learn language features—bits of knowl-
edge — from books, but the mind-set that makes that knowledge
into living skill can be learned only by practice and apprentice-
ship. What will do it is (a) reading code and (b) writing code.

Learning to program is like learning to write good natural lan-
guage. The best way to do it is to read some stuff written by mas-
ters of the form, write some things yourself, read a lot more, write
a little more, read a lot more, write some more . . . and repeat until

How to Become a Hacker

201

22 December 2000 17:48

The Cathedral and the Bazaar

your writing begins to develop the kind of strength and economy
you see in your models.

Finding good code to read used to be hard, because there were few
large programs available in source for fledgeling hackers to read
and tinker with. This has changed dramatically; open-source soft-
ware, programming tools, and operating systems (all built by
hackers) are now widely available. Which brings me neatly to our
next topic

2. Get One of the Open-Source Unixes and Learn to
Use and Run It.

I’m assuming you have a personal computer or can get access to
one (these kids today have it so easy :-)). The single most impor-
tant step any newbie can take toward acquiring hacker skills is to
get a copy of Linux or one of the BSD-Unixes, install it on a per-
sonal machine, and run it.

Yes, there are other operating systems in the world besides Unix.
But they’re distributed in binary—you can’t read the code, and
you can’t modify it. Trying to learn to hack on a DOS or Win-
dows machine or under MacOS is like trying to learn to dance
while wearing a body cast.

Besides, Unix is the operating system of the Internet. While you
can learn to use the Internet without knowing Unix, you can’t be
an Internet hacker without understanding Unix. For this reason,
the hacker culture today is pretty strongly Unix-centered. (This
wasn’t always true, and some old-time hackers still aren’t happy
about it, but the symbiosis between Unix and the Internet has
become strong enough that even Microsoft’s muscle doesn’t seem
able to seriously dent it.)

So, bring up a Unix—I like Linux myself but there are other ways
(and yes, you can run both Linux and DOS/Windows on the same
machine). Learn it. Run it. Tinker with it. Talk to the Internet
with it. Read the code. Modify the code. You’ll get better pro-
gramming tools (including C, LISP, Python, and Perl) than any

202

22 December 2000 17:48

Microsoft operating system can dream of, you’ll have fun, and
you’ll soak up more knowledge than you realize you’re learning
until you look back on it as a master hacker.

For more about learning Unix, see The Loginataka,
http://www.tuxedo.org/ ̃ esr/faqs/loginataka.html.

To get your hands on a Linux, see the “Where can I get Linux”
page, http://linuxresources.com/apps/ftp.html.

You can find BSD Unix help and resources at http://www.bsd.org.

(Note: I don’t really recommend installing either Linux or BSD as
a solo project if you’re a newbie. For Linux, find a local Linux
user’s group and ask for help; or contact the Linux Internet Sup-
port Co-Operative, http://www.linpeople.org. LISC maintains IRC
channels [http://openprojects.nu/services/irc.html] where you can
get help.)

3. Learn How to Use the World Wide Web and
Write HTML.

Most of the things the hacker culture has built do their work out
of sight, helping run factories and offices and universities without
any obvious impact on how non-hackers live. The Web is the one
big exception, the huge shiny hacker toy that even politicians
admit is changing the world. For this reason alone (and a lot of
other good ones as well) you need to learn how to work the Web.

This doesn’t just mean learning how to drive a browser (anyone
can do that), but learning how to write HTML, the Web’s markup
language. If you don’t know how to program, writing HTML will
teach you some mental habits that will help you learn. So build a
home page.

But just having a home page isn’t anywhere near good enough to
make you a hacker. The Web is full of home pages. Most of them
are pointless, zero-content sludge—very snazzy-looking sludge,
mind you, but sludge all the same (for more on this see The
HTML Hell Page: http://www.tuxedo.org/ ̃ esr/html-hell.html).

How to Become a Hacker

203

22 December 2000 17:48

The Cathedral and the Bazaar

To be worthwhile, your page must have content—it must be inter-
esting and/or useful to other hackers. And that brings us to the
next topic

Status in the Hacker Culture

Like most cultures without a money economy, hackerdom runs on
reputation. You’re trying to solve interesting problems, but how
interesting they are, and whether your solutions are really good, is
something that only your technical peers or superiors are normally
equipped to judge.

Accordingly, when you play the hacker game, you learn to keep
score primarily by what other hackers think of your skill (this is
why you aren’t really a hacker until other hackers consistently call
you one). This fact is obscured by the image of hacking as solitary
work; also by a hacker-cultural taboo (now gradually decaying
but still potent) against admitting that ego or external validation
are involved in one’s motivation at all.

Specifically, hackerdom is what anthropologists call a gift culture.
You gain status and reputation in it not by dominating other peo-
ple, nor by being beautiful, nor by having things other people
want, but rather by giving things away. Specifically, by giving
away your time, your creativity, and the results of your skill.

There are basically five kinds of things you can do to be respected
by hackers:

1. Write Open-Source Software

The first (the most central and most traditional) is to write pro-
grams that other hackers think are fun or useful, and give the pro-
gram sources to the whole hacker culture to use.

(We used to call these works ‘‘free software’’, but this confused too
many people who weren’t sure exactly what ‘‘free’’ was supposed
to mean. Many of us now prefer the term “open-source” software,
http://www.opensource.org/.)

204

22 December 2000 17:48

Hackerdom’s most revered demigods are people who have written
large, capable programs that met a widespread need and given
them away, so that now everyone uses them.

2. Help Test and Debug Open-Source Software

They also serve who stand and debug open-source software. In
this imperfect world, we will inevitably spend most of our soft-
ware development time in the debugging phase. That’s why any
open-source author who’s thinking will tell you that good beta-
testers (who know how to describe symptoms clearly, localize
problems well, can tolerate bugs in a quickie release, and are will-
ing to apply a few simple diagnostic routines) are worth their
weight in rubies. Even one of these can make the difference
between a debugging phase that’s a protracted, exhausting night-
mare and one that’s merely a salutary nuisance.

If you’re a newbie, try to find a program under development that
you’re interested in and be a good beta-tester. There’s a natural
progression from helping test programs to helping debug them to
helping modify them. You’ll learn a lot this way, and generate
good karma with people who will help you later on.

3. Publish Useful Information

Another good thing is to collect and filter useful and interesting
information into web pages or documents like Frequently Asked
Questions (FAQ) lists, and make those generally available.

Maintainers of major technical FAQs get almost as much respect
as open-source authors.

4. Help Keep the Infrastructure Working

The hacker culture (and the engineering development of the Inter-
net, for that matter) is run by volunteers. There’s a lot of necessary
but unglamorous work that needs done to keep it going—admin-
istering mailing lists, moderating newsgroups, maintaining large
software archive sites, developing RFCs and other technical stan-
dards.

How to Become a Hacker

205

22 December 2000 17:48

The Cathedral and the Bazaar

People who do this sort of thing well get a lot of respect, because
everybody knows these jobs are huge time sinks and not as much
fun as playing with code. Doing them shows dedication.

5. Serve the Hacker Culture Itself

Finally, you can serve and propagate the culture itself (by, for
example, writing an accurate primer on how to become a hacker
:-)). This is not something you’ll be positioned to do until you’ve
been around for while and become well-known for one of the first
four things.

The hacker culture doesn’t have leaders, exactly, but it does have
culture heroes and tribal elders and historians and spokespeople.
When you’ve been in the trenches long enough, you may grow
into one of these. Beware: hackers distrust blatant ego in their
tribal elders, so visibly reaching for this kind of fame is dangerous.
Rather than striving for it, you have to sort of position yourself so
it drops in your lap, and then be modest and gracious about your
status.

The Hacker/Nerd Connection

Contrary to popular myth, you don’t have to be a nerd to be a
hacker. It does help, however, and many hackers are in fact nerds.
Being a social outcast helps you stay concentrated on the really
important things, like thinking and hacking.

For this reason, many hackers have adopted the label ‘nerd’ and
even use the harsher term ‘geek’ as a badge of pride—it’s a way of
declaring their independence from normal social expectations. See
The Geek Page (http://samsara.circus.com/ ̃ omni/geek.html) for
extensive discussion.

If you can manage to concentrate enough on hacking to be good
at it and still have a life, that’s fine. This is a lot easier today than
it was when I was a newbie in the 1970s; mainstream culture is

206

22 December 2000 17:48

much friendlier to techno-nerds now. There are even growing
numbers of people who realize that hackers are often high-quality
lover and spouse material.

If you’re attracted to hacking because you don’t have a life, that’s
okay too—at least you won’t have trouble concentrating. Maybe
you’ll get a life later on.

Points for Style

Again, to be a hacker, you have to enter the hacker mindset. There
are some things you can do when you’re not at a computer that
seem to help. They’re not substitutes for hacking (nothing is) but
many hackers do them, and feel that they connect in some basic
way with the essence of hacking.

• Learn to write your native language well. Though it’s a com-
mon stereotype that programmers can’t write, a surprising
number of hackers (including all the best ones I know of) are
able writers.

• Read science fiction. Go to science fiction conventions (a good
way to meet hackers and proto-hackers).

• Study Zen, and/or take up martial arts. (The mental discipline
seems similar in important ways.)

• Develop an analytical ear for music. Learn to appreciate pecu-
liar kinds of music. Learn to play some musical instrument
well, or how to sing.

• Develop your appreciation of puns and wordplay.

The more of these things you already do, the more likely it is that
you are natural hacker material. Why these things in particular is
not completely clear, but they’re connected with a mix of left- and
right-brain skills that seems to be important (hackers need to be
able to both reason logically and step outside the apparent logic of
a problem at a moment’s notice).

How to Become a Hacker

207

22 December 2000 17:48

The Cathedral and the Bazaar

Finally, a few things not to do:

• Don’t use a silly, grandiose user ID or screen name.

• Don’t get in flame wars on Usenet (or anywhere else).

• Don’t call yourself a ‘cyberpunk’, and don’t waste your time
on anybody who does.

• Don’t post or email writing that’s full of spelling errors and
bad grammar.

The only reputation you’ll make doing any of these things is as a
twit. Hackers have long memories—it could take you years to live
your early blunders down enough to be accepted.

The problem with screen names or handles deserves some amplifi-
cation. Concealing your identity behind a handle is a juvenile and
silly behavior characteristic of crackers, warez d00dz, and other
lower life forms. Hackers don’t do this; they’re proud of what
they do and want it associated with their real names. So if you
have a handle, drop it. In the hacker culture it will only mark you
as a loser.

Other Resources

Peter Seebach maintains an excellent Hacker FAQ
(http://www.plethora.net/ ̃ seebs/faqs/hacker.html) for managers
who don’t understand how to deal with hackers. I have also writ-
ten A Brief History of Hackerdom, (http://www.tuxedo.org/ ̃ esr/
writings/hacker-history/hacker-history.html). The Cathedral and
the Bazaar, (http://www.tuxedo.org/ ̃ esr/writings/cathedral-
bazaar/index.html) explains a lot about how the Linux and open-
source cultures work. I have addressed this topic even more
directly in its sequel Homesteading the Noosphere,
http://www.tuxedo.org/ ̃ esr/writings/homesteading/.

208

22 December 2000 17:48

Frequently Asked Questions

Will you teach me how to hack?

Since first publishing this essay, I’ve gotten several requests a
week (often several a day) from people to “teach me all about
hacking”. Unfortunately, I don’t have the time or energy to do
this; my own hacking projects, and traveling as an open-
source advocate, take up 110% of my time.

Even if I did, hacking is an attitude and skill you basically
have to teach yourself. You’ll find that while real hackers
want to help you, they won’t respect you if you beg to be
spoon-fed everything they know.

Learn a few things first. Show that you’re trying, that you’re
capable of learning on your own. Then go to the hackers you
meet with specific questions.

How can I get started, then?

The best way for you to get started would probably be to go
to a LUG (Linux user group) meeting. You can find such
groups on the LDP General Linux Information Page,
http://MetaLab.unc.edu/LDP/intro.html; there is probably one
near you, possibly associated with a college or university.
LUG members will probably give you a Linux if you ask, and
will certainly help you install one and get started.

When do you have to start? Is it too late for me to learn?

Any age at which you are motivated to start is a good age.
Most people seem to get interested between ages 15 and 20,
but I know of exceptions in both directions.

How long will it take me to learn to hack?

That depends on how talented you are and how hard you
work at it. Most people can acquire a respectable skill set in
18 months to 2 years, if they concentrate. Don’t think it ends
there, though; if you are a real hacker, you will spend the rest
of your life learning and perfecting your craft.

How to Become a Hacker

209

22 December 2000 17:48

The Cathedral and the Bazaar

Are Visual Basic or Delphi good languages to start with?

No, because they’re not portable. There are no open-source
implementations of these languages, so you’d be locked into
only those platforms the vendor chooses to support. Accept-
ing that kind of monopoly situation is not the hacker way.

Visual Basic is especially awful. The fact that it’s a proprietary
Microsoft language is enough to disqualify it, and like other
Basics it’s a poorly designed language that will teach you bad
programming habits.

One of those bad habits is becoming dependent on a single
vendor’s libraries, widgets, and development tools. In general,
any language that isn’t supported under at least Linux or one
of the BSDs, and/or at least three different vendors’ operating
systems, is a poor one to learn to hack in.

Would you help me to crack a system, or teach me how to crack?

No. Anyone who can still ask such a question after reading
this FAQ is too stupid to be educable even if I had the time for
tutoring. Any emailed requests of this kind that I get will be
ignored or answered with extreme rudeness.

How can I get the password for someone else’s account?

This is cracking. Go away, idiot.

I’ve been cracked. Will you help me fend off further attacks?

No. Every time I’ve been asked this question so far, it’s been
from somebody running Windows. It is not possible to effec-
tively secure Windows systems against crack attacks; the code
and architecture simply have too many flaws, and securing
Windows is like trying to bail out a boat with a sieve. The
only reliable prevention is to switch to Linux or some other
operating system with real security.

I’m having problems with my Windows software. Will you help
me?

Yes. Go to a DOS prompt and type “format c:”. The prob-
lems you are experiencing will cease within a few minutes.

210

22 December 2000 17:48

Where can I find some real hackers to talk with?

The best way is to find a Unix or Linux user’s group local to
you and go to their meetings (you can find links to several lists
of user groups on the LDP site at Metalab, http://meta-
lab.unc.edu/LDP/).

(I used to say here that you wouldn’t find any real hackers on
IRC, but I’m given to understand this is changing. Apparently
some real hacker communities, attached to things like GIMP
and Perl, have IRC channels now.)

Can you recommend useful books about hacking-related subjects?

I maintain a Linux Reading List HOWTO,
http://sunsite.unc.edu/LDP/HOWTO/Reading-List-HOWTO/
index.html, that you may find helpful. The Loginataka may
also be interesting.

What language should I learn first?

HTML, if you don’t already know it. There are a lot of glossy,
hype-intensive bad HTML books out there, and distressingly
few good ones. The one I like best is HTML: The Definitive
Guide (http://www.oreilly.com/catalog/html3/).

But HTML is not a full programming language. When you’re
ready to start programming, I would recommend starting with
Python, http://www.python.org. You will hear a lot of people
recommending Perl, and Perl is still more popular than
Python, but it’s harder to learn and (in my opinion) less well
designed. There are web resources for beginners using Python
at http://www.deja.com/getdoc.xp?AN=523189453.

C is really important, but it’s also much more difficult than
either Python or Perl. Don’t try to learn it first.

Windows users, do not settle for Visual Basic. It will teach
you bad habits, and it’s not portable off Windows. Avoid.

What kind of hardware do I need?

It used to be that personal computers were rather underpow-
ered and memory-poor, enough so that they placed artificial
limits on a hacker’s learning process. This stopped being true

How to Become a Hacker

211

22 December 2000 17:48

The Cathedral and the Bazaar

some time ago; any machine from an Intel 486DX50 up is
more than powerful enough for development work, X, and
Internet communications, and the smallest disks you can buy
today are plenty big enough.

The important thing in choosing a machine on which to learn
is whether its hardware is Linux-compatible (or BSD-compati-
ble, should you choose to go that route). Again, this will be
true for most modern machines; the only sticky areas are
modems and printers; some machines have Windows-specific
hardware that won’t work with Linux.

There’s a FAQ on hardware compatibility; the latest version is
here, http://users.bart.nl/ ̃ patrickr/hardware-howto/Hard-
ware-HOWTO.html.

Do I need to hate and bash Microsoft?

No, you don’t. Not that Microsoft isn’t loathsome, but there
was a hacker culture long before Microsoft and there will still
be one when Microsoft is history. Any energy you spend hat-
ing Microsoft would be better spent on loving your craft.
Write good code—that will bash Microsoft quite sufficiently
without polluting your karma.

But won’t open-source software leave programmers unable to
make a living?

This seems unlikely—so far, the open-source software indus-
try seems to be creating jobs rather than taking them away. If
having a program written is a net economic gain over not hav-
ing it written, a programmer will get paid whether or not the
program is going to be free after it’s done. And, no matter
how much “free” software gets written, there always seems to
be more demand for new and customized applications. I’ve
written more about this at the Open Source (http://www.open-
source.org) pages.

212

22 December 2000 17:48

How can I get started? Where can I get a free Unix?

Elsewhere on this page I include pointers to where to get the
most commonly used free Unix. To be a hacker you need
motivation and initiative and the ability to educate yourself.
Start now

How to Become a Hacker

213

22 December 2000 17:48

APPENDIX B

Statistical Trends in the
Fetchmail Project’s Growth

✦ ✦ ✦

The scattergram below was made with Gnuplot 3.7 from data
pulled directly out of the fetchmail project NEWS file using two
custom shellscripts available on the project website.

The graph shows the population growth of the fetchmail project.
The horizontal scale is days since baseline, which is when I started
collecting statistics in October 1996 at version 1.9.0. Left vertical

215

22 December 2000 17:48

The Cathedral and the Bazaar

scale is number of participants. There is one data point for each
release; therefore, the changes in density of marks indicate release
frequency.

The peak in the earliest part of the graph (before the note “Bad
addresses dropped”) seems to be an artifact; I was not regularly
dropping addresses that became invalid at the time. Turnover on
the list seems to be about 5% per month (but that’s just my esti-
mate, I don’t have numbers on this).

The scatter of squares is total participants. The scatter of crosses is
the count of people on fetchmail-friends after I split the list. The
scatter of triangles is the population of fetchmail-announce after
the split.

The scatter of diamonds tracks project size in lines of code (right
vertical axis). The scale relationship between this scatter and the
other three is arbitrary.

This graph is quite revealing. Several trends stand out:

• Over time, the project population displays rather consistent
linear growth.

• The key event in the project’s lifetime was release 4.3.0 in
October 1997, when I declared the code to be out of develop-
ment and in maintainance mode, and split the fetchmail list.

• The run-up to 4.3.0 saw the most intensive spate of releases in
the project’s history (the gap in that run happened when I
took a two-week vacation). It was followed by a significant
slowdown.

• After 4.3.0, the developer population remained fairly stable
around an average of about 250 participants.

216

22 December 2000 17:48

• Essentially all population growth after 4.3.0 happened on the
announce list, among people using fetchmail but not active
co-developers.

• The growth trend in code size looks sublinear, perhaps loga-
rithmic.

The linear growth trend in population is particularly interesting; a
priori we might expect geometric or logistic growth, given that the
project spreads by word of mouth.

It has been suggested that the linear growth rate is the result of a
situation in which both number of projects and the population of
eligible programmers are rising on trend curves of the same (prob-
ably exponential) rate.

There are some web pages doing similar things:

• http://kitenet.net/programs/debhelper/stats/ contains growth
statistics on the debhelper packaging utility.

• http://durak.org:81/sean/pubs/kfc/ is a page on the vocabulary
of the Linux kernel.

Statistical Trends in the Fetchmail Project’s Growth

217

22 December 2000 17:48

Notes, Bibliography,
and Acknowledgments

✦ ✦ ✦

A Brief History of Hackerdom

Notes

1. David E. Lundstrom. ‘‘Real Programmer.’’ In A Few Good Men From
UNIVAC, 1987. An anecdotal history.

2. Levy, Steven. Hackers. Garden City, N.Y.: Anchor/Doubleday, 1984.

3. Raymond, Eric S. The New Hacker’s Dictionary. Cambridge: MIT
Press, 1996.

The Cathedral and the Bazaar

Notes
1. In Programing Pearls, the noted computer-science aphorist Jon Bentley com-

ments on Brooks’s observation with ‘‘If you plan to throw one away, you will
throw away two.’’ He is almost certainly right. The point of Brooks’s obser-
vation, and Bentley’s, isn’t merely that you should expect the first attempt to
be wrong, it’s that starting over with the right idea is usually more effective
than trying to salvage a mess.

2. Examples of successful open-source, bazaar development predating the Inter-
net explosion and unrelated to the Unix and Internet traditions have existed.
The development of the info-Zip (http://www.cdrom.com/pub/infozip/)

219

22 December 2000 17:48

The Cathedral and the Bazaar

compression utility during 1990–1992, primarily for DOS machines, was one
such example. Another was the RBBS bulletin board system (again for DOS),
which began in 1983 and developed a sufficiently strong community that
there have been fairly regular releases up to the present (mid-1999) despite
the huge technical advantages of Internet mail and file-sharing over local
BBSs. While the info-Zip community relied to some extent on Internet mail,
the RBBS developer culture was actually able to base a substantial online
community on RBBS that was completely independent of the TCP/IP infras-
tructure.

3. That transparency and peer review are valuable for taming the complexity of
OS development turns out, after all, not to be a new concept. In 1965, very
early in the history of time-sharing operating systems, Corbató and Vyssot-
sky, co-designers of the Multics operating system (http://www.multicians.org/
fjcc1.html) wrote:

It is expected that the Multics system will be published when it is
operating substantially Such publication is desirable for two
reasons: First, the system should withstand public scrutiny and crit-
icism volunteered by interested readers; second, in an age of
increasing complexity, it is an obligation to present and future sys-
tem designers to make the inner operating system as lucid as possi-
ble so as to reveal the basic system issues.

4. John Hasler has suggested an interesting explanation for the fact that duplica-
tion of effort doesn’t seem to be a net drag on open-source development. He
proposes what I’ll dub ‘‘Hasler’s Law’’: the costs of duplicated work tend to
scale sub-quadratically with team size—that is, more slowly than the plan-
ning and management overhead that would be needed to eliminate them.

This claim actually does not contradict Brooks’s Law. It may be the case that
total complexity overhead and vulnerability to bugs scales with the square of
team size, but that the costs from duplicated work are nevertheless a special
case that scales more slowly. It’s not hard to develop plausible reasons for
this, starting with the undoubted fact that it is much easier to agree on func-
tional boundaries between different developers’ code that will prevent dupli-
cation of effort than it is to prevent the kinds of unplanned bad interactions
across the whole system that underly most bugs.

The combination of Linus’s Law and Hasler’s Law suggests that there are
actually three critical size regimes in software projects. On small projects (I
would say one to at most three developers) no management structure more
elaborate than picking a lead programmer is needed. And there is some inter-
mediate range above that in which the cost of traditional management is rela-
tively low, so its benefits from avoiding duplication of effort, bug-tracking,
and pushing to see that details are not overlooked actually net out positive.

Above that, however, the combination of Linus’s Law and Hasler’s Law sug-
gests there is a large-project range in which the costs and problems of tradi-
tional management rise much faster than the expected cost from duplication
of effort. Not the least of these costs is a structural inability to harness the
many-eyeballs effect, which (as we’ve seen) seems to do a much better job
than traditional management at making sure bugs and details are not

220

22 December 2000 17:48

overlooked. Thus, in the large-project case, the combination of these laws
effectively drives the net payoff of traditional management to zero.

5. The split between Linux’s experimental and stable versions has another func-
tion related to, but distinct from, hedging risk. The split attacks another
problem: the deadliness of deadlines. When programmers are held both to an
immutable feature list and a fixed drop-dead date, quality goes out the win-
dow and there is likely a colossal mess in the making. I am indebted to Marco
Iansiti and Alan MacCormack of the Harvard Business School for showing
me me evidence that relaxing either one of these constraints can make
scheduling workable.

One way to do this is to fix the deadline but leave the feature list flexible,
allowing features to drop off if not completed by deadline. This is essentially
the strategy of the “stable” kernel branch; Alan Cox (the stable-kernel main-
tainer) puts out releases at fairly regular intervals, but makes no guarantees
about when particular bugs will be fixed or what features will be back-ported
from the experimental branch.

The other way to do this is to set a desired feature list and deliver only when
it is done. This is essentially the strategy of the “experimental” kernel branch.
De Marco and Lister cited research showing that this scheduling policy
(“wake me up when it’s done”) produces not only the highest quality but, on
average, shorter delivery times than either “realistic” or “aggressive” schedul-
ing.

I have come to suspect (as of early 2000) that in earlier versions of this essay I
severely underestimated the importance of the “wake me up when it’s done”
anti-deadline policy to the open-source community’s productivity and quality.
General experience with the rushed GNOME 1.0 release in 1999 suggests
that pressure for a premature release can neutralize many of the quality bene-
fits open source normally confers.

It may well turn out to be that the process transparency of open source is one
of three co-equal drivers of its quality, along with “wake me up when it’s
done” scheduling and developer self-selection.

6. It’s tempting, and not entirely inaccurate, to see the core-plus-halo organiza-
tion characteristic of open-source projects as an Internet-enabled spin on
Brooks’s own recommendation for solving the N-squared complexity prob-
lem, the “surgical-team” organization—but the differences are significant.
The constellation of specialist roles such as “code librarian” that Brooks envi-
sioned around the team leader doesn’t really exist; those roles are executed
instead by generalists aided by toolsets quite a bit more powerful than those
of Brooks’s day. Also, the open-source culture leans heavily on strong Unix
traditions of modularity, APIs, and information hiding—none of which were
elements of Brooks’s prescription.

7. The respondent who pointed out to me the effect of widely varying trace path
lengths on the difficulty of characterizing a bug speculated that trace-path dif-
ficulty for multiple symptoms of the same bug varies “exponentially” (which
I take to mean on a Gaussian or Poisson distribution, and agree seems very
plausible). If it is experimentally possible to get a handle on the shape of this
distribution, that would be extremely valuable data. Large departures from a

Notes, Bibliography, and Acknowledgments

221

22 December 2000 17:48

The Cathedral and the Bazaar

flat equal-probability distribution of trace difficulty would suggest that even
solo developers should emulate the bazaar strategy by bounding the time they
spend on tracing a given symptom before they switch to another. Persistence
may not always be a virtue

8. An issue related to whether one can start projects from zero in the bazaar
style is whether the bazaar style is capable of supporting truly innovative
work. Some claim that, lacking strong leadership, the bazaar can only handle
the cloning and improvement of ideas already present at the engineering
state-of-the-art, but is unable to push the state-of-the-art. This argument was
perhaps most infamously made by the Halloween Documents,
http://www.opensource.org/halloween/, two embarrassing internal Microsoft
memoranda written about the open-source phenomenon. The authors com-
pared Linux’s development of a Unix-like operating system to ‘‘chasing tail-
lights’’, and opined ‘‘(once a project has achieved ’parity’ with the state-of-
the-art), the level of management necessary to push towards new frontiers
becomes massive’’.

There are serious errors of fact implied in this argument. One is exposed
when the Halloween authors themseselves later observe that ‘‘Often [. . .]
new research ideas are first implemented and available on Linux before they
are available/incorporated into other platforms.’’

If we read ‘‘open source’’ for ‘‘Linux’’, we see that this is far from a new phe-
nomenon. Historically, the open-source community did not invent Emacs or
the World Wide Web or the Internet itself by chasing taillights or being mas-
sively managed—and in the present, there is so much innovative work going
on in open source that one is spoiled for choice. The GNOME project (to
pick one of many) is pushing the state of the art in GUIs and object technol-
ogy hard enough to have attracted considerable notice in the computer trade
press well outside the Linux community. Other examples are legion, as a visit
to Freshmeat (http://freshmeat.net/) on any given day will quickly prove.

But there is a more fundamental error in the implicit assumption that the
cathedral model (or the bazaar model, or any other kind of management
structure) can somehow make innovation happen reliably. This is nonsense.
Gangs don’t have breakthrough insights—even volunteer groups of bazaar
anarchists are usually incapable of genuine originality, let alone corporate
committees of people with a survival stake in some status quo ante. Insight
comes from individuals. The most their surrounding social machinery can
ever hope to do is to be responsive to breakthrough insights—to nourish and
reward and rigorously test them instead of squashing them.

Some will characterize this as a romantic view, a reversion to outmoded lone-
inventor stereotypes. Not so; I am not asserting that groups are incapable of
developing breakthrough insights once they have been hatched; indeed, we
learn from the peer-review process that such development groups are essential
to producing a high-quality result. Rather I am pointing out that every such
group development starts from—is necessarily sparked by—one good idea in
one person’s head. Cathedrals and bazaars and other social structures can
catch that lightning and refine it, but they cannot make it on demand.

222

22 December 2000 17:48

Therefore the root problem of innovation (in software, or anywhere else) is
indeed how not to squash it—but, even more fundamentally, it is how to
grow lots of people who can have insights in the first place.

To suppose that cathedral-style development could manage this trick but the
low entry barriers and process fluidity of the bazaar cannot would be absurd.
If what it takes is one person with one good idea, then a social milieu in
which one person can rapidly attract the cooperation of hundreds or thou-
sands of others with that good idea is going inevitably to out-innovate any in
which the person has to do a political sales job to a hierarchy before he can
work on his idea without risk of getting fired.

And, indeed, if we look at the history of software innovation by organizations
using the cathedral model, we quickly find it is rather rare. Large corpora-
tions rely on university research for new ideas (thus the Halloween Docu-
ments authors’ unease about Linux’s facility at coopting that research more
rapidly). Or they buy out small companies built around some innovator’s
brain. In neither case is the innovation native to the cathedral culture; indeed,
many innovations so imported end up being quietly suffocated under the
“massive level of management” the Halloween Documents’ authors so extol.

That, however, is a negative point. The reader would be better served by a
positive one. I suggest the following:

• Pick a criterion for originality that you believe you can apply consis-
tently. If your definition is ‘‘I know it when I see it’’, that’s not a problem
for purposes of this test.

• Pick any closed-source operating system competing with Linux, and a
best source for accounts of current development work on it.

• Watch that source and Freshmeat for one month. Every day, count the
number of release announcements on Freshmeat that you consider ‘orig-
inal’ work. Apply the same definition of ‘original’ to announcements for
that other OS and count them.

• Thirty days later, total up both figures.

The day I wrote this, Freshmeat carried 22 release announcements, of which
3 appear they might push state-of-the-art in some respect, This was a slow
day for Freshmeat, but I will be astonished if any reader reports as many as 3
likely innovations a month in any closed-source channel.

9. We now have history on a project that, in several ways, may provide a more
indicative test of the bazaar premise than fetchmail; EGCS,
http://egcs.cygnus.com/, the Experimental GNU Compiler System.

This project was announced in mid-August of 1997 as a conscious attempt to
apply the ideas in the early public versions of The Cathedral and the Bazaar.
The project founders felt that the development of GCC, the Gnu C Compiler,
had been stagnating. For about 20 months afterwards, GCC and EGCS con-
tinued as parallel products—both drawing from the same Internet developer
population, both starting from the same GCC source base, both using pretty
much the same Unix toolsets and development environment. The projects dif-
fered only in that EGCS consciously tried to apply the bazaar tactics I have

Notes, Bibliography, and Acknowledgments

223

22 December 2000 17:48

The Cathedral and the Bazaar

previously described, while GCC retained a more cathedral-like organization
with a closed developer group and infrequent releases.

This was about as close to a controlled experiment as one could ask for, and
the results were dramatic. Within months, the EGCS versions had pulled sub-
stantially ahead in features; better optimization, better support for FOR-
TRAN and C++. Many people found the EGCS development snapshots to be
more reliable than the most recent stable version of GCC, and major Linux
distributions began to switch to EGCS.

In April of 1999, the Free Software Foundation (the official sponsors of GCC)
dissolved the original GCC development group and officially handed control
of the project to the the EGCS steering team.

10. Of course, Kropotkin’s critique and Linus’s Law raise some wider issues
about the cybernetics of social organizations. Another folk theorem of soft-
ware engineering suggests one of them; Conway’s Law — commonly stated as
‘‘If you have four groups working on a compiler, you’ll get a 4-pass com-
piler.’’ The original statement was more general: ‘‘Organizations which design
systems are constrained to produce designs which are copies of the communi-
cation structures of these organizations.’’ We might put it more succinctly as
‘‘The means determine the ends’’, or even ‘‘Process becomes product’’.

It is accordingly worth noting that in the open-source community organiza-
tional form and function match on many levels. The network is everything
and everywhere: not just the Internet, but the people doing the work form a
distributed, loosely coupled, peer-to-peer network that provides multiple
redundancy and degrades very gracefully. In both networks, each node is
important only to the extent that other nodes want to cooperate with it.

The peer-to-peer part is essential to the community’s astonishing productivity.
The point Kropotkin was trying to make about power relationships is devel-
oped further by the ‘SNAFU Principle’: ‘‘True communication is possible only
between equals, because inferiors are more consistently rewarded for telling
their superiors pleasant lies than for telling the truth.’’ Creative teamwork
utterly depends on true communication and is thus very seriously hindered by
the presence of power relationships. The open-source community, effectively
free of such power relationships, is teaching us by contrast how dreadfully
much they cost in bugs, in lowered productivity, and in lost opportunities.

Further, the SNAFU principle predicts in authoritarian organizations a pro-
gressive disconnect between decision-makers and reality, as more and more of
the input to those who decide tends to become pleasant lies. The way this
plays out in conventional software development is easy to see; there are
strong incentives for the inferiors to hide, ignore, and minimize problems.
When this process becomes product, software is a disaster.

224

22 December 2000 17:48

Bibliography

I quoted several bits from Frederick P. Brooks’s classic The Mythical Man-
Month because, in many respects, his insights have yet to be improved
upon. I heartily recommend the 25th Anniversary edition from Addison-
Wesley, which adds his ‘‘No Silver Bullet’’ paper (1986).

The new edition is wrapped up by an invaluable 20-years-later retrospec-
tive in which Brooks forthrightly admits to the few judgements in the
original text that have not stood the test of time. I first read the retrospec-
tive after the first public version of this essay was substantially complete,
and was surprised to discover that Brooks attributed bazaar-like practices
to Microsoft! (In fact, however, this attribution turned out to be mis-
taken. In 1998 we learned from the Halloween Documents
(http://www.opensource.org/halloween/) that Microsoft’s internal devel-
oper community is heavily balkanized, with the kind of general source
access needed to support a bazaar not even truly possible.)

Gerald M. Weinberg’s The Psychology Of Computer Programming (New
York: Van Nostrand Reinhold, 1971) introduced the rather unfortu-
nately-labeled concept of ‘‘egoless programming’’. While he was nowhere
near the first person to realize the futility of the ‘‘principle of command’’,
he was probably the first to recognize and argue the point in particular
connection with software development.

Richard P. Gabriel, contemplating the Unix culture of the pre-Linux era,
reluctantly argued for the superiority of a primitive bazaar-like model in
his 1989 paper ‘‘LISP: Good News, Bad News, and How to Win Big’’.
Though dated in some respects, this essay is still rightly celebrated among
LISP fans (including me). A correspondent reminded me that the section
titled ‘‘Worse Is Better’’ reads almost as an anticipation of Linux. The
paper is accessible on the World Wide Web at http://www.naggum.no/
worse-is-better.html".

De Marco’s and Lister’s Peopleware: Productive Projects and Teams
(New York: Dorset House, 1987) is an underappreciated gem that I was
delighted to see Fred Brooks cite in his retrospective. While little of what
the authors have to say is directly applicable to the Linux or open-source
communities, the authors’ insight into the conditions necessary for cre-
ative work is acute and worthwhile for anyone attempting to import
some of the bazaar model’s virtues into a commercial context.

Finally, I must admit that I very nearly called this essay ‘‘The Cathedral
and the Agora’’, the latter term being the Greek for an open market or

Notes, Bibliography, and Acknowledgments

225

22 December 2000 17:48

The Cathedral and the Bazaar

public meeting place. The seminal ‘‘agoric systems’’ papers by Mark
Miller and Eric Drexler, by describing the emergent properties of market-
like computational ecologies, helped prepare me to think clearly about
analogous phenomena in the open-source culture when Linux rubbed my
nose in them five years later. These papers are available on the Web at
http://www.agorics.com/agorpapers.html".

Acknowledgments

This essay was improved by conversations with a large number of people
who helped debug it. Particular thanks to Jeff Dutky
(dutky@wam.umd.edu), who suggested the ‘‘debugging is parallelizable’’
formulation, and helped develop the analysis that proceeds from it. Also
to Nancy Lebovitz (nancyl@universe.digex.net) for her suggestion that I
emulate Weinberg by quoting Kropotkin. Perceptive criticisms also came
from Joan Eslinger (wombat@kilimanjaro.engr.sgi.com) and Marty Franz
(marty@net-link.net) of the General Technics list. Glen Vandenburg
(glv@vanderburg.org) pointeed out the importance of self-selection in
contributor populations and suggested the fruitful idea that much devel-
opment rectifies ‘bugs of omission’; Daniel Upper (upper@peak.org) sug-
gested the natural analogies for this. I’m grateful to the members of
PLUG, the Philadelphia Linux User’s Group, for providing the first test
audience for the first public version of this essay. Paula Matuszek
(matusp00@mh.us.sbphrd.com) enlightened me about the practice of soft-
ware management. Phil Hudson (phil.hudson@iname.com) reminded me
that the social organization of the hacker culture mirrors the organization
of its software, and vice-versa. John Buck (johnbuck@sea.ece.umassd.edu)
pointed out that MATLAB makes an instructive parallel to Emacs. Russell
Johnston (russjj@mail.com) brought me to consciousness about some of
the mechanisms discussed in ‘‘How Many Eyeballs Tame Complexity’’.
Finally, Linus Torvalds’s comments were helpful and his early endorse-
ment very encouraging.

226

22 December 2000 17:48

Homesteading the Noosphere

Notes
1. The term ‘noosphere’ is an obscure term of art in philosophy. It is pro-

nounced KNOW-uh-sfeer (two o-sounds, one long and stressed, one short
and unstressed tending towards schwa). If one is being excruciatingly correct
about one’s orthography, the term is properly spelled with a diaeresis over the
second ‘o’ to mark it as a separate vowel.

In more detail; this term for ‘‘the sphere of human thought’’ derives from the
Greek ‘noos’ meaning ‘mind’, ‘intelligence,’ or ’breath’. It was invented by E.
LeRoy in Les origines humaines et l’evolution de l’intelligence (Paris, 1928). It
was popularized first by the Russian biologist and pioneering ecologist
Vladimir Ivanovich Vernadsky, (1863–1945), then by the Jesuit paleon-
tologist/philosopher Pierre Teilhard de Chardin (1881–1955). It is with Teil-
hard de Chardin’s theory of future evolution to a form of pure mind
culminating in union with the Godhead that the term is now primarily associ-
ated.

2. David Friedman, one of the most lucid and accessible thinkers in contempo-
rary economics, has written an excellent outline of the history and logic of
intellectual-property law (http://www.best.com/ ̃ ddfr/Academic/Course_Pages
/L_and_E_LS_98/Why_Is_Law/Why_Is_Law_Chapter_11.html). I recom-
mend it as a starting point to anyone interested in these issues.

3. One interesting difference between the Linux and BSD worlds is that the
Linux kernel (and associated OS core utilities) have never forked, but BSD’s
has, at least three times. What makes this interesting is that the social struc-
ture of the BSD groups is centralized in a way intended to define clear lines of
authority and to prevent forking, while the decentralized and amorphous
Linux community takes no such measures. It appears that the projects that
open up development the most actually have the least tendency to fork!

Henry Spencer (henry@spsystems.net) suggests that, in general, the stability of
a political system is inversely proportional to the height of the entry barriers
to its political process. His analysis is worth quoting here:

One major strength of a relatively open democracy is that most
potential revolutionaries find it easier to make progress toward
their objectives by working via the system rather by attacking it.
This strength is easily undermined if established parties act together
to ‘raise the bar’, making it more difficult for small dissatisfied
groups to see some progress made toward their goals.

(A similar principle can be found in economics. Open markets have
the strongest competition, and generally the best and cheapest
products. Because of this, it’s very much in the best interests of
established companies to make market entry more difficult—for
example, by convincing governments to require elaborate RFI test-
ing on computers, or by creating ‘consensus’ standards that are so
complex that they cannot be implemented effectively from scratch

Notes, Bibliography, and Acknowledgments

227

22 December 2000 17:48

The Cathedral and the Bazaar

without large resources. The markets with the strongest entry barri-
ers are the ones that come under the strongest attack from revolu-
tionaries, e.g., the Internet and the Justice Dept. vs. the Bell
System.)

An open process with low entry barriers encourages participation
rather than secession, because one can get results without the high
overheads of secession. The results may not be as impressive as
what could be achieved by seceding, but they come at a lower price,
and most people will consider that an acceptable tradeoff. (When
the Spanish government revoked Franco’s anti-Basque laws and
offered the Basque provinces their own schools and limited local
autonomy, most of the Basque Separatist movement evaporated
almost overnight. Only the hard-core Marxists insisted that it
wasn’t good enough.)

4. There are some subtleties about rogue patches. One can divide them into
‘friendly’ and ‘unfriendly’ types. A ‘friendly’ patch is designed to be merged
back into the project’s main-line sources under the maintainer’s control
(whether or not that merge actually happens); an ‘unfriendly’ one is intended
to yank the project in a direction the maintainer doesn’t approve. Some pro-
jects (notably the Linux kernel itself) are pretty relaxed about friendly patches
and even encourage independent distribution of them as part of their beta-test
phase. An unfriendly patch, on the other hand, represents a decision to com-
pete with the original and is a serious matter. Maintaining a whole raft of
unfriendly patches tends to lead to forking.

5. I am indebted to Michael Funk (mwfunk@uncc.campus.mci.net) for pointing
out how instructive a contrast with hackers the pirate culture is. Linus Walleij
has posted an analysis of their cultural dynamics that differs from mine
(describing them as a scarcity culture) in A Comment on ‘Warez D00dz’ Cul-
ture (http://www.df.lth.se/ ̃ triad/papers/Raymond_D00dz.html").

The contrast may not last. Former cracker Andrej Brandt (andy@pil-
grim.cs.net.pl) reports that he believes the cracker/warez d00dz culture is now
withering away, with its brightest people and leaders assimilating to the open-
source world. Independent evidence for this view may be provided by a prece-
dent-breaking July 1999 action of the cracker group calling itself “Cult of the
Dead Cow”. They have released their “Back Orifice 2000” for breaking
Microsoft Windows security tools under the GPL.

6. In evolutionary terms, the craftsman’s urge itself may (like internalized ethics)
be a result of the high risk and cost of deception. Evolutionary psychologists
have collected experimental evidence1 that human beings have brain logic
specialized for detecting social deceptions, and it is fairly easy to see why our
ancestors should have been selected for ability to detect cheating. Therefore,
if one wishes to have a reputation for personality traits that confer advantage
but are risky or costly, it may actually be better tactics to actually have these
traits than to fake them. (‘‘Honesty is the best policy.’’)

Evolutionary psychologists have suggested that this explains behavior like
barroom fights. Among younger adult male humans, having a reputation for
toughness is both socially and (even in today’s feminist-influenced climate)

228

22 December 2000 17:48

sexually useful. Faking toughness, however, is extremely risky; the negative
result of being found out leaves one in a worse position than never having
claimed the trait. The cost of deception is so high that it is sometimes better
minimaxing to internalize toughness and risk serious injury in a fight to prove
it. Parallel observations have been made about less controversial traits like
honesty.

Though the primary meditation-like rewards of creative work should not be
underestimated, the craftsman’s urge is probably at least in part just such an
internalization (where the base trait is ‘capacity for painstaking work’ or
something similar).

Handicap theory may also be relevant. The peacock’s gaudy tail and the stag’s
massive rack of antlers are sexy to females because they send a message about
the health of the male (and, consequently, its fitness to sire healthy offspring).
They say: “I am so vigorous that I can afford to waste a lot of energy on this
extravagant display.” Giving away source code, like owning a sports car, is
very similar to such showy, wasteful finery—it’s expense without obvious
return, and makes the giver at least theoretically very sexy.

7. A concise summary of Maslow’s hierarchy and related theories is available on
the Web at http://www.valdosta.peachnet.edu/ ̃ whuitt/psy702/regsys/
maslow.html".

8. However, demanding humility from leaders may be a more general character-
istic of gift or abundance cultures. David Christie (dc@netscape.com) reports
on a trip through the outer islands of Fiji:

In Fijian village chiefs, we observed the same sort of self-deprecat-
ing, low-key leadership style that you attribute to open source pro-
ject leaders. [. . .] Though accorded great respect and of course all
of whatever actual power there is in Fiji, the chiefs we met demon-
strated genuine humility and often a saint-like acceptance of their
duty. This is particularly interesting given that being chief is a
hereditary role, not an elected position or a popularity contest.
Somehow they are trained to it by the culture itself, although they
are born to it, not chosen by their peers.’’ He goes on to emphasize
that he believes the characteristic style of Fijian chiefs springs from
the difficulty of compelling cooperation: a chief has ‘‘no big carrot
or big stick’’.

9. As a matter of observable fact, people who found successful projects gather
more prestige than people who do arguably equal amounts of work debug-
ging and assisting with successful projects. An earlier version of this essay
asked ‘‘Is this a rational valuation of comparative effort, or is it a second-
order effect of the unconscious territorial model we have adduced here?’’ Sev-
eral respondents suggested persuasive and essentially equivalent theories. The
following analysis by Ryan Waldron (rew@erebor.com) puts the case well:

In the context of the Lockean land theory, one who establishes a
new and successful project has essentially discovered or opened up
new territory on which others can homestead. For most successful
projects, there is a pattern of declining returns, so that after a
while, the credit for contributions to a project has become so

Notes, Bibliography, and Acknowledgments

229

22 December 2000 17:48

The Cathedral and the Bazaar

diffuse that it is hard for significant reputation to accrete to a late
participant, regardless of the quality of his work.

For instance, how good a job would I have to do making modifica-
tions to the Perl code to have even a fraction of the recognition for
my participation that Larry, Tom, Randall, and others have
achieved?

However, if a new project is founded [by someone else] tomorrow,
and I am an early and frequent participant in it, my ability to share
in the respect generated by such a successful project is greatly
enhanced by my early participation therein (assuming similar qual-
ity of contributions). I reckon it to be similar to those who invest
in Microsoft stock early and those who invest in it later. Everyone
may profit, but early participants profit more. Therefore, at some
point I will be more interested in a new and successful IPO than I
will be in participating in the continual increase of an existing body
of corporate stock.

Ryan Waldron’s analogy can be extended. The project founder has to do a
missionary sell of a new idea that may or may not be acceptable or of use to
others. Thus the founder incurs something analogous to an IPO risk (of possi-
ble damage to their reputation), more so than others who assist with a project
that has already garnered some acceptance by their peers. The founder’s
reward is consistent despite the fact that the assistants may be putting in
more work in real terms. This is easily seen as analogous to the relationship
between risk and rewards in an exchange economy.
Other respondents have observed that our nervous system is tuned to perceive
differences, not steady state. The revolutionary change evidenced by the cre-
ation of a new project is therefore much more noticeable than the cumulative
effect of constant incremental improvement. Thus Linus is revered as the
father of Linux, although the net effect of improvements by thousands of
other contributors have done more to contribute to the success of the OS
than one man’s work ever could.

10. The phrase ‘‘de-commoditizing’’ is a reference to the Halloween Documents
(http://www.opensource.org/halloween/) in which Microsoft used ‘‘de-com-
moditize’’ quite frankly to refer to their most effective long-term strategy for
maintaining an exploitative monopoly lock on customers.

11. A respondent points out that the values surrounding the ‘‘You’re not a hacker
until other hackers call you a hacker’’ norm parallel ideals professed (if not
always achieved) by other meritocratic brotherhoods within social elites suffi-
ciently wealthy to escape the surrounding scarcity economy. In the medieval
European ideal of knighthood, for example, the aspiring knight was expected
to fight for the right, to seek honor rather than gain, to take the side of the
weak and oppressed, and to constantly seek challenges that tested his prowess
to the utmost. In return, the knight-aspirant could regard himself (and be
regarded by others) as among the best of the best—but only after his skill
and virtue had been admitted and ratified by other knights. In the knightly
ideal extolled by the Arthurian tales and Chansons de Geste we see a mix of
idealism, continual self-challenge, and status-seeking similar to that which

230

22 December 2000 17:48

animates hackers today. It seems likely that similar values and behavioral
norms should evolve around any skill that both requires great dedication and
confers a kind of power.

12. The Free Software Foundation’s main website (http://www.gnu.org/philoso-
phy/motivation.html") carries an article that summarizes the results of many
of these studies. The quotes in this essay are excerpted from there.

Bibliography

Miller, William Ian. Bloodtaking and Peacemaking: Feud, Law, and Soci-
ety in Saga Iceland. Chicago: University of Chicago Press, 1990. A fasci-
nating study of Icelandic folkmoot law, which both illuminates the
ancestry of the Lockean theory of property and describes the later stages
of a historical process by which custom passed into customary law and
thence to written law.

Malaclypse the Younger. Principia Discordia, or How I Found Goddess
and What I Did To Her When I Found Her. Loompanics, 1980. There is
much enlightening silliness to be found in Discordianism. Amidst it, the
‘SNAFU principle’ provides a rather trenchant analysis of why command
hierarchies don’t scale well. There’s a browseable HTML version,
http://www.cs.cmu.edu/ ̃ tilt/principia/.

Barkow, J.L. Cosmides, and J. Tooby (Eds.). The Adapted Mind: Evolu-
tionary Psychology and the Generation of Culture. New York: Oxford
University Press, 1992. An excellent introduction to evolutionary psychol-
ogy. Some of the papers bear directly on the three cultural types I discuss
(command/exchange/gift), suggesting that these patterns are wired into
the human psyche fairly deep.

Goldhaber, Michael K.: “The Attention Economy and the Net”,
http://www.firstmonday.dk/issues/issue2_4/goldhaber". I discovered this
paper after my version 1.7. It has obvious flaws (Goldhaber’s argument
for the inapplicability of economic reasoning to attention does not bear
close examination), but Goldhaber nevertheless has funny and perceptive
things to say about the role of attention-seeking in organizing behavior.
The prestige or peer repute I have discussed can fruitfully be viewed as a
particular case of attention in his sense.

I have summarized the history of the hacker culture in A Brief History of
Hackerdom, http://www.tuxedo.org/ ̃ esr/faqs/hacker-hist.html". The
book that will explain it really well remains to be written, probably not
by me.

Notes, Bibliography, and Acknowledgments

231

22 December 2000 17:48

The Cathedral and the Bazaar

Acknowledgments

Robert Lanphier (robla@real.com) contributed much to the discussion of
egoless behavior. Eric Kidd (eric.kidd@pobox.com) highlighted the role of
valuing humility in preventing cults of personality. The section on global
effects was inspired by comments from Daniel Burn (daniel@tsathog-
gua.lab.usyd.edu.au). Mike Whitaker (mrw@entropic.co.uk) inspired the
main thread in the section on acculturation. Chris Phoenix
(cphoenix@best.com) pointed out the importance of the fact that hackers
cannot gain reputation by doing other hackers down. A.J. Venter (JAVen-
ter@africon.co.za) pointed out parallels with the medieval ideal of knight-
hood. Ian Lance Taylor (ian@airs.com) sent careful criticisms of the
reputation-game model, which motivated me to think through and
explain my assumptions more clearly.

The Magic Cauldron

Notes
1. The underprovision problem would in fact scale linearly with a number of

users if we assumed programming talent to be uniformly distributed in the
project user population as it expands over time. This is not, however, the
case.

The incentives discussed in 2 (and some more conventionally economic ones
as well) imply that qualified people tend to seek projects that match their
interests, as well as the projects seeking them. Accordingly, theory suggests
(and experience tends to confirm) that the most valuable (most qualified and
motivated) people tend to discover the projects for which they fit well rela-
tively early in the projects’ life cycles, with a corresponding fall-off later on.

Hard data are lacking, but on the basis of experience I strongly suspect the
assimilation of talent over a growing project’s lifetime tends to follow a classi-
cal logistic curve.

2. Shawn Hargreaves has written a good analysis of the applicability of open-
source methods to games in Playing the Open Source Game
(http://www.talula.demon.co.uk/games.html").

3. Note for accountants: the argument that service costs will eventually swamp
a fixed up-front price still works if we move from constant dollars to dis-
counted present value, because future sale revenue discounts in parallel with
future service costs.

A similar but more sophisticated counter to the argument is to observe that,
per-copy, service cost will go to zero when the buyer stops using the software;
therefore you can still win, if the user stops before he/she has generated too

232

22 December 2000 17:48

much service cost. This is basically just another form of the argument that
factory pricing rewards the production of shelfware. Perhaps a more instruc-
tive way to put it would be that the risk that your service costs will swamp
the purchase revenue rises with the expected period of usefulness of the soft-
ware. Thus, the factory model penalizes quality.

4. Wayne Gramlich (Wayne@Gramlich.Net) has proposed that the persistance
of the factory model is partly due to antiquated accounting rules, formulated
when machines and buildings were more important and people less so. Soft-
ware company books show the computers, office furniture, and buildings as
assets and the programmers are expenses. Of course, in reality, the program-
mers are the true assets and the computers, office equipment, and buildings
hardly matter at all. This perverse valuation is sustained by IRS and stock-
market pressure for stable and uniform accounting rules that reduce the com-
plexity of assigning a dollar figure to the company’s value. The resulting drag
has prevented the rules from keeping up with reality.

On this view, pinning a high price to the bits in the product (independent of
future service value) is partly a sort of defense mechanism, a way of agreeing
for all parties involved to pretend that the ontological ground hasn’t fallen
out from under the standard accounting rules.

(Gramlich also points out that these rules underpin the bizarre and often self-
destructive acquisition sprees that many software companies tear off on after
IPO: ‘‘Usually the software company issues some additional stock to build up
a war chest. But they can’t spend any of this money to beef up their program-
ming staff, because the accounting rules would show that as increased
expenses. Instead, the newly public software company has to grow by acquir-
ing other software companies, because the accounting rules let you treat the
acquisition as an investment.’’)

5. For a paradigmatic example of forking following defection, consult the his-
tory of OpenSSH. This project was belatedly forked from an early version of
SSH (Secure Shell) after the latter went to a closed license.

Bibliography

The Cathedral and the Bazaar, http://www.tuxedo.org/ ̃ esr/writings/cathe-
dral-bazaar/

Homesteading the Noosphere, http://www.tuxedo.org/ ̃ esr/writings/
homesteading/

De Marco and Lister. Peopleware: Productive Projects and Teams. New
York: Dorset House, 1987.

Notes, Bibliography, and Acknowledgments

233

22 December 2000 17:48

The Cathedral and the Bazaar

Acknowledgments

Several stimulating discussions with David D. Friedman helped me refine
the ‘inverse commons’ model of open-source cooperation. I am also
indebted to Marshall van Alstyne for pointing out the conceptual impor-
tance of rivalrous information goods. Ray Ontko of the Indiana Group
supplied helpful criticism. A good many people in audiences before whom
I gave talks in the year leading up to June 1999 also helped; if you’re one
of those, you know who you are.

It’s yet another testimony to the open-source model that this essay was
substantially improved by email feedback I received within days after ini-
tial release. Lloyd Wood pointed out the importance of open-source soft-
ware being ‘future-proof’. and Doug Dante reminded me of the ‘Free the
Future’ business model. A question from Adam Moorhouse led to the dis-
cussion of exclusion payoffs. Lionel Oliviera Gresse gave me a better
name for one of the business models. Stephen Turnbull slapped me silly
about careless handling of free-rider effects. Anthony Bailey and Warren
Young corrected some facts in the Doom case study. Eric W. Sink con-
tributed the insight that the factory model rewards shelfware.

For Further Reading

The beginnings of an academic analytical literature on open source have
begun to appear. Related material on the Web can be found at the
author’s web page (http://www.tuxedo.org/ ̃ esr/writings/cathedral-
bazaar).

Ross Anderson. How to Cheat at the Lottery (or, Massively Parallel
Requirements Engineering). In this insightful, lucid and entertaining
paper, the author presents the results of an experiment in applying
bazaar-style parallelism not to coding but to the requirements analysis
and system design for a difficult problem in computer security.

Available as http://www.cl.cam.ac.uk/ ̃ rja14/lottery/lottery.html.

Davis Baird. “Scientific Instrument Making, Epistemology, and the Con-
flict between Gift and Commodity Economies.” In Journal of the Society
for Philosophy & Technology, Volume 2, no. 3–4. This paper is interest-
ing because, although it never refers to software or open source and is
founded in earlier anthropological literature on gift cultures, it suggests

234

22 December 2000 17:48

an analysis similar in many respects to that in Homesteading the Noo-
sphere.

Available on the Web at http://scholar.lib.vt.edu/ejournals/SPT/
v2_n3n4html/baird.html.

Asif Khalak, Evolutionary Model for Open Source Software: Economic
Impact. The author attempts to model open-source market penetration
analytically and to use computer simulation to examine the mosel’s
dependence on various cost and behavioral parameters. Presented at
Genetic and Evolutionary Computation Conference, Ph.D. Workshop,
July 1999.

Available as http://web.mit.edu/asif/www/ace.html.

Bojidar Mantarow. Open Source Software as a New Business Model. The
author treats Red Hat Software as a case study in the effects of lowering
barriers to entry in a mature market. This dissertation was submitted in
partial fulfillment of the degree of MSc in International Management at
University of Reading, August 1999.

Available as http://www.lochnet.net/bozweb/academic/dissert.htm.

Eben Moglen. “Anarchism Triumphant: Free Software and the Death of
Copyright.” This paper (originally published in the Columbia Law
Review) contains a regrettably large number of errors in facts and logic,
and the analytical content is very nearly smothered under misguided
political polemic. Nevertheless, it is an entertaining and provocative read,
worth plowing through if only for the context of Moglen’s unforgettable
corollary to Faraday’s Law: “Wrap the Internet around every brain on the
planet and spin the planet. Software flows in the wires.”

Available as http://old.law.columbia.edu/my_pubs/anarchism.html.

Notes, Bibliography, and Acknowledgments

235

22 December 2000 17:48

Index

✦ ✦ ✦

A
adverse possession, 77
AIs (Artificial Intelligence Labora-

tories), 4
Amabile, Theresa (psychologist),

107
Apache, 130
Apple Computers, 10

open sourcing Darwin, 136
ARPAnet, 4

electronic mailing lists and, 7
Artificial Intelligence Laboratories

(AIs), 4
attractive dissonance, 180

B
BASIC language, 10
bazaar development style, 19, 21,

50, 54
Linus’s Law and, 31
vs. cathedral mode, 55

Berkeley Systems Design, Incorpo-
rated (BSDI), 16

BIND, 181
Brooks, Fred (author), 25, 32, 37,

49, 170
Brook’s Law, 34, 50, 53

predictions of, 170

BSDI (Berkeley systems Design,
Incorporated), 16

ideology of hacker culture and,
70

bugs, fixing bazaar style, 33–36

C
C language, 8
Carnegie-Mellon University

(CMU), 5
category killers, 42, 92
Cathedral and the Bazaar, 171

Netscape Communications
and, 173

cathedral development style, 19,
21, 27–28

Linus’s Law and, 30
vs. bazaar mode, 55

Chester County InterLink (CCIL),
22

Cisco, 131
Clarke, Arthur C., 115
closed source

applications and, 162
development problems of, 33
GNU Emac editor and, 55
Linux and, 54

237

22 December 2000 17:48

The Cathedral and the Bazaar

CMU (Carnegie-Mellon Univer-
sity), 5

code reuse, 24
command hierarchy, 80
Community Source licenses, 133
core developers, communicating

with collaborators, 34
Cray, Seymour, 3

D
Debian Free Software Guidelines,

71
DEC (Digital Equipment Corpora-

tion), 5
Delphi effect, 31
Digital Equipment Corporation

(DEC), 5
Doom (id software game), 146

E
egoless programming, 50
EMACS program editor, 6

category killers and, 92
Lisp code and, 27

Emacs VC (version control), 27
exchange economy, 80

F
fetchpop, 24
forking

definition of, 72
license restrictions and, 133

free software, 175
Free Software Foundation (FSF),

69
HURD project, failure of, 14
Lisp archives and, 28
origins of, 11

FSF (see Free Software Foun-
da tion)

Fuller, Buckminster (inventor),
115

G
General Public License (GPL), 69
gift cultures, 81
GIMP, 93
GNU Emacs Lisp library, 27
GNU (Gnu’s Not Unix) project,

11
GNU project

open-source development and,
21, 24

Gosling, James, 29
GPL (General Public License), 69
Guerrilla Marketing Tactics, pro-

moting open source, 178

H
hacker culture

ideology of, 67–71
prestige in, 84
reputation incentives, 85–87

hackers
as users, 26
gift culture and, 80–82
hacking, joy of, 82–83
prehistory of, 3

Hacker’s Dictionary, 5
Halloween Documents, 183
Hardin, Garret (ecologist), 124
hardware

innovations of, 7
Harris, Carl (programmer), 25
Hayek, Friedrich A., 126
hierarchy of values (Maslow), 83
homesteading, 76

I
IMAP (Internet Message Access

Protocol), 25, 37
Incompatible Time-sharing System

(see ITS)
in-house code, 117
Intel 386 chip, 13

238

22 December 2000 17:48

Internet
Free Software Foundation

(FSF) and, 69
Linux developers and, 21, 29
popular discovery of, 17
Unix development and, 51

Internet Explorer (Microsoft),
135, 172

ITS (Incompatible Time-sharing
System), 6

breakdown of, 13

J
Jargon File (The Hacker’s Dictio-

nary), 5
Jolitz, William and Lynne, 15

K
Kipling, Rudyard, 164
Kropotkin, Pyotr Alexeyvich, 51

L
license restrictions for software,

133
licenses (open source), 72

ownership and, 73
Linus’s law, 30
Linux

category killers and, 93
for-profit packagers and, 133
ideology of hacker culture and,

70
kernels, early releases of, 29
open source and, 21
origins of, 15
promoting for open source

movement, 177
stable and unstable versions,

32
World Wide Web and, 17

LISP
code archives, evolution of, 27

LISP (AI language), 6
Locke, John, 76–79

M
MACRO-10, 5
maintenance, for software, 118
Maslow, Abraham, 83
MATLAB, 28
maximizaing reputation incen-

tives, 85
Memoirs of a Revolutionist

(Kropotkin), 51
Microsoft

Halloween Documents and,
183

Internet Explorer, 135, 172
MIME (Multipurpose Internet

Mail Extensions), 44
Minix, 24

Andy Tanenbaum and, 43
MIT, 4–6
Motorola 68000 microchip, 11
Mozilla organization, 135, 174

mismanagement of, 186
Multics, 8
Mythical Man-Month (Brooks),

25, 32

N
Netscape Communications, Inc.,

open-sourcing browsers,
135, 173

Netscape Public License (NPL),
134

New Hacker’s Dictionary, 169
noosphere, definition of, 77
NPL (Netscape Public License),

134

O
Oh, Seung-Hong (programer), 24
Ohio State Emacs Lisp arcive, 28
open source, 4

business ecology of, 152
company competition and,

148–151

Index

239

22 December 2000 17:48

The Cathedral and the Bazaar

open source (cont’d)
conflicts and resolution in, 103
Doom (id software game) and,

146
doomsday scenario, 160
economics of software, 123
fixing bugs and, 33
forking and, 72
future of, 187–191
ideology of, S
indirect sale-value models and,

135–140
licenses, 72
origins of, 175–178
ownership and, 73–76
reasons for closing source,

128–129
software, conflicts over, 99

Open Source Definition (OSD),
71, 134

Free Software Guideline and,
176

promoting open source move-
ment, 178

O’Reilly, Tim (publisher), 172
Free Software Summit and,

181
open source and, 175

OSD (Open Source Definition), 71
Osterhout, John, 71
ownership, in open source culture,

100–103

P
Palo Alto Research Center

(XEROX PARC), 7
PARC (Palo Alto Reasearch Cen-

ter), 7
PDP-1, 4
PDP-10, 5

electronic mailing lists and, .
PDP-11, 9
Perens, Bruce, 176
Perl culture, 71

personal computers
origins of, 10

personal computers, origins of, 13
POP (Post Office Protocol), 23
popclient, 25, 36

becoming fetchmail, 38
programming projects, in hacker

ownership customs, 78
project structures, 100–103
Psychology of Computer Pro-

gramming (Weinberg),
50

R
Real Programmers, 3
reputation-game model, implica-

tions of, 92–94
Rideau, Faré, 78
Ritchie, Dennis, 8
RMS (see Stallman, Richard

M.)

S
SAIL (Stanford University’s Artifi-

cial Intelligence Labora-
tory, 5

Saint-Exupéry, Antoine de, 41
sale value for software, 129
sale value of software, 117,

132–140
Samba, 95
SF-LOVERS list, 7
SMTP (Simple Mail Transfer Pro-

tocol), 23
adding to popclient, 38–42

software
as a service industry, 119
conflicts over open source, 99
economic value of, 115–166
innovations of, 7
sale value of, 132–140
use-value of, 129–132

240

22 December 2000 17:48

Stallman, Richard M. (RMS), 11,
27, 29, 69

Stanford University’s Artificial
Intelligence Laboratory
(SAIL), 5

Sun Microsystems, 12
Community Source licenses

and, 133

T
taboos, in hacker culture, 85
Tanenbaum, Andy (creator of

Minix), 43
theory of property (Locke), 77
Thompson, Ken, 8
TOPS-10, 5
Torvalds, Linus, 15, 21

ideology of hacker culture, 70
Linus’s law, 30
Linux kernels, early releases of,

29
releasing stable and unstable

kernels, 32
reusing code for Linux, 24
success of, 170

Tragedy of the Commons
(Hardin), 124

transfer of title, 76

U
Unix, 8–10

Berkeley vs. AT&T, 13
Free Software Foundation

(FSF) and, 69
GNU project and, 11
origins of, 8
portability of, 9
proprietary era of, 12–15

use value, 117
Usenet, 9
users, 26

as co-developers, 29
use-value of software, 129–132

V
van Rossum, Guido, 71
VAX, 9

W
Wall, Larry (inventor of Perl), 40

hacker culture and, 71
Weinberg, Gerald (author), 50
widget frosting, 136–142
Windows operating system, 14
workstations, first generation of,

11

X
X window system, 12
XEROX PARC (Palo Alto

Research Center), 7

Z
Zawinski, Jamie (Mozilla co-

founder), 186

Index

241

22 December 2000 17:48

The cover of this book was designed and produced in Adobe Pho-
toshop 5.0 and QuarkXPress 4.1 with Interstate and Sabon fonts.
The cover illustration, “Composition with Figures,” was painted
by Livbov Popova in 1913. It is part of the collection of the State
Tetraykov Gallery.

The interior of the book is set in Adobe’s Sabon font, which was
designed by Jan Tschichold in 1964. The roman design is based on
Garamond; the italic is based on typefaces created by Robert
Granjon, one of Garamond’s contemporaries. Sabon is a regis-
tered trademark of Linotype-Hell AG and/or its subsidiaries.

Composition was done using GNU Emacs, the DocBook 4.1
markup language, and a set of formatting tools developed by Steve
Talbott, Norm Walsh, and Lenny Muellner using perl and GNU
troff.

Many people contributed to this project, including Tim O’Reilly,
Edie Freedman, Sarah Jane Shangraw, Claire Cloutier, Lenny
Muellner, David Futato, Melanie Wang, Emma Colby, Joe Wizda,
Catherine Morris, Emily Quill, Matt Hutchinson, Sue Willing,
Betsy Waliszewski, and Mark Brokering.

,colophon.21416 Page 269 Friday, December 22, 2000 5:39 PM

,colophon.21416 Page 270 Friday, December 22, 2000 5:39 PM

